Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Еліптичні інтеграли

Тип Реферат
Предмет Математика
Просмотров
494
Размер файла
288 б
Поделиться

Ознакомительный фрагмент работы:

Еліптичні інтеграли

Міністерство освіти і науки України

Південноукраїнський державний педагогічний університет

ім. К.Д.Ушинського (м. Одеса)

Кафедра математичного аналізу

Курсова робота на тему:

„Еліптичні інтеграли”

виконала

студентка 4 курсу

інституту фізики і математики

спеціальності „МІ”

Сушкова О.А.

Науковий керівник:

Аров Д.З.

Одеса 2007


План

Вступ

1.Загальні зауваження та означення

2.Допоміжні перетворення

3.Приведення до канонічної форми

4. Еліптичні інтеграли 1-го, 2-го і 3-го роду

Висновки

Література

Додатки


Вступ

У багатьох питаннях науки і техніки доводиться не по заданій функції шукати її похідну, а навпаки – відновлювати функцію по відомій її похідній.

Дамо наступне означення:

Функція F(x) на даному проміжку називається первісною функцією для функції f(x) або інтегралом від f(x), якщо на всьому цьому проміжку f(x) являється похідною для функції F(x) або, що те ж саме, f(x)dx служить для F(x) диференціалом

F’(x )= f(x) або dF(x )= f(x)dx.

Пошук для функції всіх її первісних, що називається інтегруванням її, і складає одну з задач інтегрального числення; як бачимо, ця задача являється оберненою основній задачі диференціального числення. Так, наприклад, для обчислення довжини дуги еліпса чи деякої її частини необхідно розв’язати певні еліптичні інтеграли, яким і присвячена дана курсова робота.

1. Загальні зауваження та означення

Розглянемо інтеграл виду

(1)

де y це алгебраїчна функція від х, тобто задовольняє алгебраїчному рівнянню

(2)

(тут - цілий відносно та многочлен). Інтеграли подібного роду отримали назву абелевих інтегралів. До їх числа відносяться інтеграли

Дійсно, функції

задовольняють, відповідно, алгебраїчним рівнянням


Виходячи на геометричну точку зору, абелев інтеграл (1) вважають зв’язаним з тою алгебраїчною кривою, яка визначається рівнянням (2). Наприклад, інтеграл

(3)

зв’язаний з кривою другого порядку

Якщо крива (2) може бути представлена параметрично

так, що функції є раціональними, то в інтегралі (1) стає можливою раціоналізація підінтегрального виразу: підстановкою вона зводиться до виду

.

До цього класу відносяться обидва вище згадані випадки. В окремому випадку, можливість раціоналізації підінтегрального виразу в інтегралі типу (3) зв’язана безпосередньо з тим фактом, що крива другого порядку унікурсальна.

Очевидно, що змінні x і t зв’язані алгебраїчним рівнянням, так що t являється алгебраїчною функцією від х. Якщо розширити клас елементарних функцій, включаючи в нього і всі алгебраїчні функції, то можна сказати, що в випадку унікурсальності кривої (2), інтеграл (1) завжди виражається через елементарні функції в кінцевому виді.

Але подібні обставини являються в деякому розумінні винятком. В загальному випадку крива (2) не унікурсальна, тоді ж, як можна довести, інтеграл (1) заздалегідь не завжди, тобто не при всякій функції R, може бути вираженим в кінцевому виді (проте не виключена можливість цього при окремих конкретних R).

З цим ми зустрічаємося уже при розгляді важливого класу інтегралів

(4)

які містять квадратний корінь з многочленів 3-ої або 4-ої степені і звичайно прилягаючих до інтегралів (3). Інтеграли виду (4) , як правило , уже не виражаються в кінцевому вигляді через елементарні функції навіть при розширеному розумінні цього терміну. Тому, знайомство з ними ми віднесли до заключного параграфу, щоб не переривати головної лінії викладення даної глави, присвяченої, головним чином вивченню класів інтегралів, що беруться в кінцевому вигляді.

Многочлени під коренем в (4) передбачаються такими, що мають дійсні коефіцієнти. Крім того, ми завжди будемо вважати, що у них не має кратних коренів, бо інакше, можна було б винести лінійний множник з під знаку кореня; питання звелося б до інтегрування виразу раніше вивчених типів, і інтеграл виразився б у кінцевому вигляді. Кінцева обставина може мати місце інколи і при відсутності кратних коренів; наприклад, легко перевірити, що


Інтеграли від виразів типу (4) взагалі називають еліптичними в зв’язку з тією обставиною, що вперше з ними зіткнулися при розв’язанні задачі про спрямування еліпсу:

Еліпс:

Зручніше буде взяти рівняння еліпса в параметричній формі , . Очевидно,

де - числовий ексцентриситет еліпса.

Обчислюючи довжину дуги еліпса від верхнього кінця малої осі до будь-якої його точки в першому квадранті, отримаємо

,

Таким чином, довжина дуги еліпса виражається еліптичним інтегралом 2-го роду; як вказувалося, цей факт послужив поводом для самої назви „еліптичний”.

В частковому випадку, довжина чверті обводу еліпса виражається через повний еліптичний інтеграл


.

Між іншим, цю назву, в прямому розумінні, відносять зазвичай лише до таких із них, що не беруться в кінцевому вигляді; інші ж, подібні тільки що приведеним, називають псевдоеліптичними.

Вивчення і табулювання ( тобто складання таблиць значень) інтегралів від виразів (4) при довільних коефіцієнтах a, b, c,…, розуміється складно. Тому звичайно бажання звести всі ці інтеграли, до небагатьох таких, до складу яких входило б по можливості менше довільних коефіцієнтів (параметрів).

Це досягається за допомогою елементарних перетворень, які ми розглянемо в наступних пунктах.

2. Допоміжні перетворення

Зазначимо перш за все, що достатньо обмежитися випадком многочлена 4-ї степені під коренем, так як до нього легко приводиться випадок, коли під коренем многочлен 3-ї степені.

Розглянемо, взагалі, алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами)

.

При достатньо великих по абсолютній величині значеннях xмногочлен має знак старшого члена, тобто при додатному x – знак , а при від’ємному x – обернений знак. Так, як многочлен це неперервна функція, то, міняючи знак, він в проміжній точці необхідно перетворюється в 0. Звідси: всяке алгебраїчне рівняння непарної степені (з дійсними коефіцієнтами) має принаймні один дійсний корінь.

Дійсно, многочлен 3-ї степені з дійсними коефіцієнтами необхідно має дійсний корінь, скажемо λ, і, відповідно, допускає дійсне розкладання

Підстановка ( або ) і здійснює потрібне приведення

В першу чергу ми будемо розглядати лише диференціали, що мають корінь із многочленів 4-ї степені.

По відомій теоремі алгебри, многочлен четвертої степені з дійсними коефіцієнтами може бути представленим у виді добутку двох квадратних трьохчленів з дійсними коефіцієнтами:

(5)

Постараємось тепер необхідною підстановкою знищити в обох трьохчленах відразу члени першої степені.

Якщо р=р’, то наша ціль досягається простою підстановкою . Нехай тепер ; в цьому випадку ми скористаємось дробно-лінійною підстановкою


Можливість встановити дійсні і при чому різні значення для коефіцієнтів μ і ν зумовлена нерівністю

(6)

Нехай же тепер трьохчлени (5) обидва мають дійсні корені, скажемо, перший – корені α і β, а другий корені γ і δ. Підставляючи

можна переписати (6) у вигляді

(6ґ)

а для здійснення цієї нерівності достатньо лише потурбуватися, щоб корені трьохчленів не перемежались (наприклад, щоб було α > β > γ > δ ), що в наших можливостях.

Таким чином, належно вибравши μ і ν, за допомогою вказаної підстановки ми отримаємо

що можна також (якщо виключити випадки, коли який-небудь з коефіцієнтів M, N, M’, N’ виявляються нулем) переписати у виді


при А, m іm’ відмінних від нуля.

Цей інтеграл можна звести, з точністю до інтеграла від раціональної функції, до такого

Розкладемо тепер раціональну функцію R*(t) на два доданки

Перший доданок не міняє свого значення при заміні tна –t, значить, зводиться до раціональної функції від : ; другий же при вказаній заміні міняє знак, і тому має вид Розглянутий інтеграл представиться в формі суми інтегралів

Але другий із них підстановкою відразу зводиться до елементарного інтегралу


і береться в кінцевому виді. Таким чином, подальшому дослідженню підлягає тільки інтеграл

(7)

3. Приведення до канонічної форми

Покажемо, нарешті, що кожен інтеграл типу (7) може бути представленим у формі

(8)

де k – деякий додатній правильний дріб: 0<k<1. Назвемо цю форму канонічною.

Введемо скорочено

Не зменшуючи загальності, дозволяється вважати тут А = ± 1; крім того, для визначеності обмежимося додатніми значеннями t. Розглянемо тепер різні можливі комбінації знаків A, m, m’ і вкажемо для кожного випадку підстановку, що безпосередньо приводить інтеграл (7) в канонічну форму.

1) А = +1, (). Для того, щоб радикал мав дійсні значення, необхідно, щоб було або Припускаємо, що

де 0<z<1 або

Тоді

так, що за kтут треба прийняти

2) А = +1, (h, h’>0). Для того, щоб радикал мав дійсні значення, обмежимося значеннями .

Припускаємо, що

де 0 < z ≤ 1.

Тоді


і можна взяти

3) А = +1, (h>h’>0). Зміна tнічим не обмежена. Припустимо

де 0≤z<1.

В цьому випадку

і

4) А = -1, (h, h’>0).Зміна tобмежена нерівністю . Беремо

, де 0<z<1 ,

так, що


і .

5) А = -1, (h>h’>0). Змінна t може змінюватися лише між і . Припустимо

, де 0<z<1.

Маємо

і Цим вичерпуються всі можливі випадки, тому що у випадку, коли А = -1 і обидва числа m, m’ > 0, радикал взагалі не міг би мати дійсних значень. Про множник ми не говорили нічого, тому що у всіх випадках він, очевидно, перетворювався у раціональну функцію від .

Відмітимо ще, що розглядаючи інтеграл (8), ми можемо обмежуватися значеннями z<1; випадок приводиться до цього підстановкою , де <1.


4. Еліптичні інтеграли 1-го, 2-го і 3-го роду

Тепер залишається вивчити найпростіші з інтегралів виду (8), до яких можна було б звести всі інтеграли цього виду, а відповідно, в кінцевому рахунку, і взагалі, всі еліптичні інтеграли.

Виділимо з раціональної функції R(x), що зустрічається в підінтегральному виразі (8) цілу частину P(x), а правильний дріб, який входить до його складу, розкладемо на прості дроби. Якщо не об’єднувати спряжені комплексні корені знаменника, а розглядати їх окремо, як дійсні корені, то R(x) представиться у вигляді суми степенів (n = 0, 1, 2,…) і дробів виду (m = 1, 2, 3,…), де а може бути і уявним числом, помножених на числові коефіцієнти. Звідси ясно, що інтеграл (8), в загальному випадку, являється лінійним агрегатом наступних інтегралів:

(n = 0, 1, 2,…)

і (m = 1, 2, 3,…).

Зупинимося на інтегралах . Якщо проінтегрувати тотожність


то отримаємо рекурентне співвідношення

(9)

що зв’язують три послідовні інтеграли І. Припускаючи що тут n=2, виразимо через та ; якщо взяти n=3 і замість підставити його вираз через та , то навіть виразиться через ці інтеграли. Продовжуючи так далі, легко переконатися, що кожен з інтегралів виражається через та і далі враховуючи (9), можна встановити і вигляд з’єднуючої їх формули

де і - постійні, а є непарний многочлен степені (2n-3). Звідси стає зрозумілим, що якщо є многочлен n – ї степені від х, то

, (10)

де і - постійні, а (х) є деякий многочлен (n-2) – ї степені від х. Визначення цих постійних і коефіцієнтів многочлена Q може бути виконано (якщо многочлен Р коректно заданий за методом невизначених коефіцієнтів.)

Зауважимо, що з (9) можна було б виразити через та інтеграли і при від’ємних значеннях (n= -1, -2, …), так що в інтегралах досить обмежитись випадком .

Переходячи до інтегралів (скажімо, при дійсних a), подібним чином встановимо для них рекурентне співвідношення

справедливе і при від’ємних і нульовому значеннях m.

Звідси всі виражаються через три з них:

тобто, кінцево через , та .

Підкреслимо, що усе це зберігає силу і при уявних значеннях параметра а.

Так в результаті усіх наших тверджень ми підходимо до наступних висновків: всі еліптичні інтеграли за допомогою елементарних підстановок – з точністю до доданків, що виражаються в кінцевому виді, - приводяться до наступних трьох стандартних інтегралів:

( останній інтеграл виходить із введенням, замість , нового параметра ). Ці інтеграли, як показав Ліувіль , в кінцевому виді вже не беруться. Лежандр їх назвав еліптичними інтегралами, відповідно, 1-го, 2-го і 3-го роду. Перші два містять лише один параметр k, а останній, крім нього, ще (комплексний) параметр h.

Лежандр вніс у ці інтеграли ще подальші спрощення, виконавши в них підстановку ( змінюється від 0 до ). При цьому перший із них безпосередньо переходить в інтеграл

. (11)

Другий перетворюється так:

тобто приводиться до попереднього інтеграла і до нового інтеграла

. (12)

Нарешті, третій інтеграл при вказаній підстановці переходить в

. (13)

Інтеграли (11), (12) і (13) також називаються еліптичними інтегралами 1-го, 2-го і 3-го роду – в формі Лежандра.

Із них особливо важливе значення і застосування мають перші два. Якщо враховувати, що ці інтеграли при перетворюються в нуль, і тим зафіксувати вільні сталі, що містяться в них, то отримаємо дві доволі визначені функції від , які Лежандр позначив відповідно через F(k, φ) і E(k, φ). Тут, крім незалежної змінної , вказаний також параметр k, що називається модулем, який входить у вирази цих функцій.

Лежандром були складені обширні таблиці значень цих функцій при різних і різних k. В них не тільки аргумент ,який трактуються як кут, що виражається в градусах, але і модуль kрозглядається як синус деякого кута, який і вказується в таблиці замість модуля, причому також в градусах.

Крім того, як Лежандром, так і іншими вченими були вивчені найглибші властивості цих функцій, встановлений ряд формул, що відносяться до них, і т.д.

Дякуючи цьому функції F і E Лежандра ввійшли в сім’ю функцій, що зустрічаються в аналізі і його додатках, на рівних правах з елементарними функціями.


Висновки

В результаті усіх наших міркувань ми коротко можемо сказати, що всі еліптичні інтеграли за допомогою елементарних підстановок – з точністю до доданків, що виражаються в кінцевому виді, - приводяться до наступних трьох стандартних інтегралів Лежандра:

А за допомогою підстановки ( змінюється від 0 до ) ці інтеграли перетворюються в такі:

, і ,

які також називаються еліптичними інтегралами 1-го, 2-го і 3-го роду в формі Лежандра, значення яких можна знайти в таблицях.


Використана література:

1. Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления. Том I. М.: Наука, 1966 г., 800 стр. с илл.

2. Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления. Том II. М.: Наука, 1966 г., 800 стр. с илл.

3. Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров. М.: Наука, 1973 г., 832 стр. с илл.

4. И.Н. Бронштейн, К.А. Семендяев. Справочник по математике для инженеров и учащихся вузов. М.: Наука, 1980 г., 976 с., илл.


ДОДАТКИ

Еліптичні інтеграли першого роду

Еліптичні інтеграли першого роду
10°20°30°40°50°60°70°80°90°
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
100.17450.17460.17460.17480.17490.17510.17520.17530.17540.1754
200.34910.34930.34990.35080.35200.35330.35450.35550.35610.3564
300.52360.52430.52630.52940.53340.53790.54220.54590.54840.5493
400.69810.69970.70430.71160.72130.73230.74360.75350.76040.7629
500.87270.87560.88420.89820.91730.94010.96470.98761.00441.0107
601.04721.05191.06601.08961.12261.16431.21261.26191.30141.3170
701.22171.22861.24951.28531.33721.40681.49441.59591.69181.7354
801.39631.40561.43441.48461.55971.66601.81252.01192.26532.4362
901.57081.58281.62001.68581.78681.93562.15652.50463.1534

Еліптичні інтеграли другого роду

Еліптичні інтеграли другого роду
10°20°30°40°50°60°70°80°90°
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
100.17450.17450.17440.17430.17420.17400.17390.17380.17370.1736
200.34910.34890.34830.34730.34620.34500.34380.34290.34220.3420
300.52360.52290.52090.51790.51410.51000.50610.50290.50070.5000
400.69810.69660.69210.68510.67630.66670.65750.64970.64460.6428
500.87270.86980.86140.84830.83170.81340.79540.78010.76970.7660
601.04721.04261.02901.00760.98010.94930.91840.89140.87280.8660
701.22171.21491.19491.16321.12211.07501.02660.98300.95140.9397
801.39631.38701.35971.31611.25901.19261.12251.05651.00540.9848
901.57081.55891.52381.46751.39311.30551.21111.11841.04011.0000

Повні еліптичні інтеграли

Повні еліптичні інтеграли
°°°
01.57081.5708301.68581.4675602.15651.2111
11.57091.5707311.69411.4608612.18421.2015
21.57131.5703321.70281.4539622.21321.1920
31.57191.5697331.71191.4469632.24351.1826
41.57271.5689341.72141.4397642.27541.1732
51.57381.5678351.73121.4323652.30881.1638
61.57511.5665361.74151.4248662.34391.1545
71.57671.5649371.75221.4171672.38091.1453
81.57851.5632381.76331.4092682.41981.1362
91.58051.5611391.77481.4013692.46101.1272
101.58281.5589401.78681.3931702.50461.1184
111.58541.5564411.79921.3849712.55071.1096
121.58821.5537421.81221.3765722.59981.1011
131.59131.5507431.82561.3680732.65211.0927
141.59461.5476441.83961.3594742.70811.0844
151.59811.5442451.85411.3506752.76811.0764
161.60201.5405461.86911.3418762.83271.0686
171.60611.5367471.88481.3329772.90261.0611
181.61051.5326481.90111.3238782.97861.0538
191.61511.5283491.91801.3147793.06171.0468
201.62001.5238501.93561.3055803.15341.0401
211.62521.5191511.95391.2963813.25531.0338
221.63071.5141521.97291.2870823.36991.0278
231.63651.5090531.99271.2776833.50041.0223
241.64261.5037542.01331.2681843.65191.0172
251.64901.4981552.03471.2587853.83171.0127
261.65571.4924562.05711.2492864.05281.0086
271.66271.4864572.08041.2397874.33871.0053
281.67011.4803582.10471.2301884.74271.0026
291.67771.4740592.13001.2206895.43491.0008
301.68581.4675602.15651.2111901.0000


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
ИжГТУ имени М.Т.Калашникова
Сделала все очень грамотно и быстро,автора советую!!!!Умничка😊..Спасибо огромное.
star star star star star
РГСУ
Самый придирчивый преподаватель за эту работу поставил 40 из 40. Спасибо большое!!
star star star star star
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по математике

Решение задач, Математика

Срок сдачи к 14 дек.

только что

Чертеж в компасе

Чертеж, Инженерная графика

Срок сдачи к 5 дек.

только что

Выполнить курсовой по Транспортной логистике. С-07082

Курсовая, Транспортная логистика

Срок сдачи к 14 дек.

1 минуту назад

Сократить документ в 3 раза

Другое, Информатика и программирование

Срок сдачи к 7 дек.

2 минуты назад

Сделать задание

Доклад, Стратегическое планирование

Срок сдачи к 11 дек.

2 минуты назад

Понятия и виды пенсии в РФ

Диплом, -

Срок сдачи к 20 янв.

3 минуты назад

Сделать презентацию

Презентация, ОМЗ

Срок сдачи к 12 дек.

3 минуты назад

Некоторые вопросы к экзамену

Ответы на билеты, Школа Здоровья

Срок сдачи к 8 дек.

5 минут назад

Приложения AVA для людей с наступающим слуха

Доклад, ИКТ

Срок сдачи к 7 дек.

5 минут назад

Роль волонтеров в мероприятиях туристской направленности

Курсовая, Координация работы служб туризма и гостеприимства

Срок сдачи к 13 дек.

5 минут назад

Контрольная работа

Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления

Срок сдачи к 30 дек.

5 минут назад
6 минут назад

Линейная алгебра

Контрольная, Математика

Срок сдачи к 15 дек.

6 минут назад

Решить 5 кейсов бизнес-задач

Отчет по практике, Предпринимательство

Срок сдачи к 11 дек.

7 минут назад

Решить одну задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

9 минут назад

Решить 1 задачу

Решение задач, Начертательная геометрия

Срок сдачи к 7 дек.

10 минут назад

Выполнить научную статью. Юриспруденция. С-07083

Статья, Юриспруденция

Срок сдачи к 11 дек.

11 минут назад

написать доклад на тему: Процесс планирования персонала проекта.

Доклад, Управение проектами

Срок сдачи к 13 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно