Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде

Тип Реферат
Предмет Маркетинг
Просмотров
482
Размер файла
143 б
Поделиться

Ознакомительный фрагмент работы:

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде


ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

Вариант № 65

Выполнил: ст. III курса гр. 3

Широких Е.Б.

Проверил: доц. Левчегов О.Н.

Липецк 2011 г.

1. Постановка задачи статистического исследования

Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.

В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.

Исходные данные
Номер предприятияСреднегодовая стоимость основных производственных фондов, млн.руб.Выпуск продукции, млн. руб.
51205,00945,00
231299,501255,50
271407,501080,00
11448,001390,50
81502,001485,00
321529,001566,00
221637,001336,50
191677,501282,50
21704,501525,50
31758,501701,00
131772,001809,00
261812,501660,50
91839,501741,50
41853,001890,00
281893,501687,50
171907,001728,00
61947,501620,00
141947,501971,00
251947,501755,00
72001,502187,00
312082,501755,00
182109,502052,00
102123,002173,50
202136,501755,00
242177,002011,50
292190,501849,50
152231,002389,50
122325,502295,00
212379,502362,50
162555,002565,00

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Yметодом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η.

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0, а1;

б) индекс детерминации R2 и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1;

б) коэффициента эластичности КЭ;

в) остаточных величин εi.

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.


2. Выводы по результатам выполнения лабораторной работы

Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.

Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.

Корреляционная связьважнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака . Следовательно, между признаками Х и Y существует корреляционная связь.

Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

,

где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:

Значение η0,1 – 0,30,3 – 0,50,5 – 0,70,7 – 0,90,9 – 0,99
Сила связиСлабаяУмереннаяЗаметнаяТеснаяВесьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η =0,56, что в соответствии с оценочнойшкалой Чэддока говорит о заметнойстепени связи изучаемых признаков.

Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.

4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi, yi),производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание.В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -728,665+1,089х.

4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

Вывод:

Значение коэффициента корреляции r =0,913 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.

Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:

1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;

2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;

3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;

4) оценка погрешности регрессионной модели.

5.1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi, yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);

2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;

– доверительные интервалы коэффициентов с уровнем надежностиР=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение значимости коэффициентов уравнения

Уровень значимости– это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.

В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками X и Yв принципене может аппроксимироваться линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,1. Так как он больше заданного уровня значимости α=0,05, то коэффициент а0 признается случайным.

Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр = Так как он меньше заданного уровня значимости α=0,05, то коэффициент а1 признается типичным.

5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

Таблица 2.9

Границы доверительных интервалов коэффициентов уравнения

КоэффициентыГраницы доверительных интервалов
Для уровня надежности Р=0,95Для уровня надежности Р=0,683
нижняяверхняянижняяверхняя
а0-1622,1164,8-1173,04-284,3
а10,901,281,001,2

Вывод:

В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах-1622,1а0164,8 значение коэффициента а1 в пределах 0,90а11,28. Уменьшение уровня надежности ведет к сужению доверительных интервалов коэффициентов уравнения.

Определение практической пригодности построенной регрессионной модели.

Практическую пригодность построенной моделиможно охарактеризовать по величине линейного коэффициента корреляции r:

· близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;

· близость к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.

Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.

В основе такой оценки лежит равенство R = r(имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.

Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при >0,7, т.е. при >0,7. Для индекса детерминации R2 это означает выполнение неравенства R2 >0,5.

При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство 0,7, а следовательно, и неравенство .

С учетом вышесказанного, практическая пригодность построенной модели связи оценивается по величине R2 следующим образом:

· неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;

· неравенство означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которойменее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.

Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").

Вывод:

Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r=0,91, R2 =0,83. Поскольку и , то построенная линейная регрессионная модель связи пригодна для практического использования.

Общая оценка адекватности регрессионной модели по F-критерию Фишера

Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.

Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.

Вывод:

Рассчитанный уровень значимостиαр индекса детерминации R2 есть αр=. Так как он меньше заданного уровня значимости α=0,05, то значение R2 признается типичным и модель связи между признаками Х и Y-728,665+1,089х. применима для генеральной совокупности предприятий отрасли в целом.

Погрешность регрессионной модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии . Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.

Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100.

В адекватных моделях погрешность не должна превышать 12%-15%.

Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение – в таблице описательных статистик (ЛР-1, Лист 1, табл.3, столбец 2).

Вывод:

Погрешность линейной регрессионной модели составляет что подтверждает адекватность построенной модели-728,665+1,089х

Задача 6. Дать экономическую интерпретацию:

1) коэффициента регрессии а1;

3) остаточных величин i.

2) коэффициента эластичности КЭ;

6.1. Экономическая интерпретация коэффициента регрессии а1

В случае линейного уравнения регрессии =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.

Вывод:

Коэффициент регрессии а1 =1,09 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,09 млн. руб.

6.2. Экономическая интерпретация коэффициента эластичности.

С целью расширения возможностей экономического анализа явления используется коэффициент эластичности , которыйизмеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.

Средние значения и приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3).

Расчет коэффициента эластичности:

Вывод:

Значение коэффициента эластичности Кэ=1,17 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 1,17 %.

6.3. Экономическая интерпретация остаточных величин εi

Каждый их остатков характеризует отклонение фактического значения yi от теоретического значения , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения следует ожидать, когда фактор Х принимает значение xi.

Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.

Значения остатков i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е.).

Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом .

Вывод:

Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции имеют три предприятия - с номерами 7,14,30, а максимальные отрицательные отклонения - три предприятия с номерами 18, 19, 28. Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.

Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.

Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.

Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).

Таблица 2.10

Регрессионные модели связи

Вид уравненияУравнение регрессии

Индекс

детерминации R2

Полином 2-го порядка5Е-0,5 х2 +0,670х+ 210,70,835
Полином 3-го порядка7E-0,8x3 - 0,0009x2 + 5,0506x – 6265,10,8381
Степенная функция0,2044x1,17890,8371

Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.

Вывод:

Максимальное значение индекса детерминации R2 =0,8381.Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид7E-0,8x3 - 0,0009x2 + 5,0506x – 6265,1

ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Исходные данные
Номер предприятияСреднегодовая стоимость основных производственных фондов, млн.руб.Выпуск продукции, млн. руб.
13608,003450,50
24244,503785,50
34378,504221,00
44613,004690,00
53005,002345,00
64847,504020,00
74981,505427,00
83742,003685,00
94579,504321,50
105283,005393,50
125785,505695,00
134412,004489,00
144847,504891,00
155551,005929,50
166355,006365,00
174747,004288,00
185249,505092,00
194177,503182,50
205316,504355,00
215919,505862,50
224077,003316,50
233239,503115,50
245417,004991,50
254847,504355,00
264512,504120,50
273507,502680,00
284713,504187,50
295450,504589,50
315182,504355,00
323809,003886,00
Таблица 2.2
Зависимость выпуска продукции от среднегодовой стоимости основных фондов
Номер группыГруппы предприятий по стоимости основеных фондовЧисло предприятий Выпуск продукции
ВсегоВ среднем
на одно
предприятие
13005-3675416147,004036,75
23675-4345519798,503959,70
34345-50151155543,005049,36
45015-5685726766,503823,79
55685-6355312830,504276,83
Итого30131085,504369,52
Таблица 2.3
Показатели внутригрупповой вариации
Номер группыГруппы предприятий по стоимости основеных фондовЧисло предприятий Внутригрупповая дисперсия
13005-36754216874,81
23675-43455994044,16
34345-501511780900,50
45015-56857561903,70
55685-6355385540,39
Итого30
Таблица 2.4
Показатели дисперсии и эмпирического корреляционного отношения
Общая дисперсияСредняя из внутригрупповых дисперсияМежгрупповая дисперсияЭмпирическое корреляционное отношение
903163,1081620585,7564282577,35170,559352496
Выходные таблицы
ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R0,91318826
R-квадрат0,833912798
Нормированный R-квадрат0,827981112
Стандартная ошибка400,8969854
Наблюдения30

Дисперсионный анализ
dfSSMSFЗначимость F
Регрессия122594778,2422594778,24140,58613841,97601E-12
Остаток284500115,002160718,3929
Итого2927094893,24
КоэффициентыСтандартная ошибкаt-статистикаP-ЗначениеНижние 95%
Y-пересечение-728,6655802436,1611477-1,6706338560,10593656-1622,101178
Переменная X 11,0893551810,0918751911,856902571,97601E-120,901157387
Верхние 95%Нижние 68,3%Верхние 68,3%
Y-пересечение164,7700179-1173,045872-284,2852881
Переменная X 11,2775529750,9957486681,182961694
ВЫВОД ОСТАТКА
НаблюдениеПредсказанное YОстатки
13201,727913248,7720873
23895,102485-109,6024854
34041,07608179,9239204
44296,52987393,4701305
52544,846739-199,8467386
64551,983659-531,9836595
74697,957254729,0427463
83347,701507337,2984931
94260,03647161,46352902
105026,397841367,1021592
115573,798819121,2011808
124077,569478411,4305218
134551,983659339,0163405
145318,345029611,1549707
156194,186595170,8134052
164442,503464-154,5034638
174989,904442102,0955578
183822,115688-639,6156882
195062,891239-707,8912393
205719,772413142,7275865
213712,635493-396,1354926
222800,300529315,1994715
235172,371435-180,871435
244551,983659-196,9836595
254187,049674-66,54967386
263092,247717-412,247717
274406,010065-218,5100652
285208,864834-619,3648336
294916,917645-561,9176451
303420,688304465,3116959

Рис. 1


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
149841
рейтинг
icon
3153
работ сдано
icon
1365
отзывов
avatar
Математика
Физика
История
icon
144910
рейтинг
icon
5924
работ сдано
icon
2672
отзывов
avatar
Химия
Экономика
Биология
icon
100839
рейтинг
icon
2060
работ сдано
icon
1284
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
57 706 оценок star star star star star
среднее 4.9 из 5
МГТУ ГА
Прекрасный исполнитель. Сделала всё раньше срока. Четко и по делу. Буду обращаться ещё. Сп...
star star star star star
СИБИТ
Работа выполнена досрочно, на твердую четверку! Спасибо исполнителю, рекомендую!
star star star star star
Хабаровский государственный университет экономики и права
Хороший исполнитель. Работа была сделана качественно, быть небольшие недочеты, но все испр...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Необходимо выполнить разрез, методом переноса точек сделать разрез...

Чертеж, Технический рисунок

Срок сдачи к 15 янв.

только что

оформление в соотв. с ГОСТ, как у курсовой, страниц 15

Реферат, Правоохранительные органы

Срок сдачи к 20 янв.

только что
только что

выполнит 2 задания

Лабораторная, методы и средства

Срок сдачи к 20 янв.

только что

Элементы линейной алгебры

Решение задач, Высшая математика

Срок сдачи к 15 янв.

только что

Финансовая система Казахстана

Реферат, финансы

Срок сдачи к 17 янв.

только что
1 минуту назад

выполнит 2 задания

Лабораторная, методы и средства

Срок сдачи к 20 янв.

2 минуты назад

решить 6 вопросов

Контрольная, Технологии обработки воды на тэс и аэс, энергетика

Срок сдачи к 18 янв.

2 минуты назад

Государственные и муниципальные финансы

Лабораторная, Экономика

Срок сдачи к 17 янв.

2 минуты назад

Нужно выполнить задания

Контрольная, Математический анализ

Срок сдачи к 16 янв.

2 минуты назад

Решить задачи

Решение задач, Статистика

Срок сдачи к 31 янв.

2 минуты назад

По 30 единицам совокупности (предприятиям, банкам

Решение задач, Статистика

Срок сдачи к 20 янв.

3 минуты назад

Реферат на тему "Типология характеров"

Реферат, Психология

Срок сдачи к 15 янв.

4 минуты назад

Технический немецкий

Контрольная, Немецкий язык

Срок сдачи к 18 янв.

4 минуты назад

Решить задачи

Решение задач, Электроразведка, электроника, электротехъника

Срок сдачи к 20 янв.

4 минуты назад

Расчетно-аналитическая работа

Контрольная, финансы

Срок сдачи к 19 янв.

4 минуты назад

Написать заключение к работе по финансовому анализу организации.

Другое, Финансовый анализ и аудит

Срок сдачи к 17 янв.

5 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно