Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Привод конвейера

Тип Реферат
Предмет Промышленность и производство
Просмотров
1512
Размер файла
527 б
Поделиться

Ознакомительный фрагмент работы:

Привод конвейера

Курсовой проект

на тему:

«Привод конвейера»

Харьков 2010


1. Кинематический расчет привода

1.1 Определение параметров исполнительного органа

Подбор ленты для транспортёра.

F=F1-F2,

где F– сила тяги перемещения грузов;

n=10…13 – коэффициент запаса.

SH= 2Р – усилие в набегающей части

[F]=100 м/Н – допускаемое разрывное усилие.

[1]

=350 мм – ширина барабана;

i– число прокладок ленты;

Принимаем i=2.

Из справочника выбираем ленту: Лента 2Т-300–2-ТК-100–8–2-Т-1 ГОСТ 20–85. Тип 1, шириной 300 мм, с 2 прокладками из ткани ТК-100, с рабочей обкладкой толщиной 8 мм и нерабочей 2 мм из резины класса Т.

1.2 Подбор электродвигателя

От характеристик выбранного двигателя (мощность, частота вращения) во многом зависит конструкция всего механизма в целом.

,


где V – скорость транспортирования грузов;

D – диаметр барабана;

Потребная мощность на барабане:

,

Где F – сила тяги для перемещения грузов.

Вычислим общий КПД механизма :

где – для конвейера;

- для компенсирующей муфты;

– КПД упругой муфты,

– для тихоходной ступени;

– КПД подшипников.

– КПД зубчатого зацепления;

Потребная мощность двигателя:

.

Подберем асинхронный двигатель с короткозамкнутым ротором и стандартным значением мощности .

Определим необходимое передаточное отношение редуктора, в зависимости от стандартных значений частоты вращения вала двигателя по формуле:


.

Выберем двигатель 4АС80В2У3 ГОСТ 15150–69 (2,5 кВт, частота вращения-2745, КПД 76%). Трехфазный асинхронный двигатель, четырехполюсный. Климатического исполнения «У», категории 3.

Пересчитаем потребное значение передаточного отношения редуктора:

2. Определение частот вращения и вращающих моментов на валах

Разделим наше передаточное отношение по ступеням и определим его значения на валах. Результату расчетов:

=

Зная частоты вращения валов и предаваемую мощность, определим вращающие моменты на валах:

3. Расчет зубчатой передачи

Результаты расчета зубчатой передачи сведены в таблицы.

Исходные данные
Наименование параметраОбозначениеБыстроходная ступеньТихоходная ступень
Мощность, кВтP2,32,1
Передаточное числоU3,854,57
Частота вращения, мин-1n2745713
Срок службы, чLh20000
Режим работыпостоянный
Тмахном2
Угол зацепления, град0
Степень точности8-B
ЗаготовкаШестерняпоковка
Колесопоковка
Марка сталиШестерня30ХГСА
Колесо
ТермообработкаШестерняЗакалка ТВЧ
Колесо
Твердость рабочей поверхности зубьев, HRCШестерняHB5555
Колесо6060
СмещениеШестерняx0
Колесо
Количество зубьевШестерняZ2623
Колесо100105
Определение допускаемых контактных напряжений
Наименование параметраОбозначениеФормулаЗначения для ступени
Быстроходная ступеньТихоходная ступень
Количество нагружений за один оборотсШ11
К11
Количество циклов нагружения с учётом режима работы, млн.NkNk=60∙c∙n∙LhШ3.29e90,856e9
К0,856е9184,5е6
Базовое число циклов, млн.NHBNHB=30∙(HB)2.4Ш358,6е3358,6е3
К555е3555,5е3
Показатель степениmт. к. Nk> NHBШ2020
К2020
Коэффициент долговечностиZNZN=Ш1,5781,476
К1,4441,338
Коэффициент запаса прочностиSHдля зубчатых колес с поверхностным упрочнением зубьевШ1.21.2
К1.21.2
Предел контактной выносливости, МПауHlimуHlim=17HRC+200Ш11351135
К13801380
Допускаемое контактное напряжение, МПа[у]HШ718768
К9381013
Принятое718768
Определение делительного диаметра и модуля
Наименование параметраОбозначениеФормула (источник)Быстроходная ступеньТихоходная ступень
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линийKГОСТ 21354–871,361,07
Вспомогательный коэффициентKd

Для прямозубых передач

Kd =770

770
Относительная ширина венцаШbdДля проектировочного расчета0,6
Крутящий момент на шестерне, HмT828,2
Расчетный делительный диаметр, ммdW30,655,8
Модуль, ммРасчетныйm1,182
ПринятыйmГОСТ 9563–6021,5
Делительный диаметр, ммШестерняdW46,9734,5
Колесо180,64157,5
Межосевое расстояние, ммaW-96
Ширина венца, ммРасчетнаяbW5,927,5
Принятая2020

Определение допускаемых напряжений

для расчета на максимальные нагрузки и на изгиб

Наименование параметраОбозначениеФормулаЗначения для ступени
Быстроходная ступеньТихоходная ступень
Количество циклов нагружения.NkNk=60∙c∙n∙Lh

Ш

К

3.29e90,856e9
0,856e9184,52е6
Базовое число циклов.NДля обоих колес:

Ш

К

4e64e6
Показатель степениmДля данного вида термообработки

Ш

К

99
Коэффициент долговечностиYNШ11
К11
Коэффициент, учитывающий размеры колесаYxШ1.041.05
К1.021.03
Коэффициент, учитывающий способ получения заготовкиYkТак как колеса и шестерни получаем штамповкой, то:

Ш

К

11
Коэффициент запаса прочностиSFПо табл. 2.4[6]

Ш

К

1.71.7
Предел выносливости при изгибе, МПауFlim0По табл. 2.4[6]

Ш

К

580580
Допускаемое напряжение при изгибе, МПа[уF]Ш356356,8
К349,7351,5
Допускаемое контактное напряжение, МПа[у]HШ718768
К9381013
Предел выносливости при изгибе, МПауFlimmaxПо табл. 2.4[6]

Ш

К

22502250
Коэффициент запаса прочностиSFmaxГОСТ 21354–87

Ш

К

21.7
Допускаемое напряжение при изгибе, МПаF]maxШ11741384
К11531364
Проверочный расчет на контактную выносливость
Наименование параметраОбозначениеФормула (источник)Быстроходная ступеньТихоходная ступень
Коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацеплениядля эвольвентного зацепления2.5
Коэффициент, учитывающий механические свойства материалов сопряженных колёс, МПа-0,5для сталей190
Коэффициент торцового перекрытия2,0362,05
Окружная скорость, м/сV6,751,29
Коэффициент, учитывающий вид передачи и модификацию профилябез модификацииГОСТ 21354–870.14
Коэффициент, учитывающий разность шагов зацепления колёсg0

для модуля до m=4

ГОСТ 21354–87

4.7
Удельная окружная динамическая сила, Н/ммWHV42,814,63
Окружная сила, НFt3411634
Коэффициент, учитывающий внутренюю динамическую нагрузкуKHV3,511.06
Относительная ширина венцаШbd0,430.6
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линийKГОСТ 21354–871.361.07
Коэффициент нагрузкиKН4,781.13
Действующее контактное напряжение, МПа686748
Сравнение с допускаемым, %-4,4-2,5
Определение действующих напряжений для расчета на изгиб
Наименование параметраОбозначениеФормулаЗначения для ступени
Быстроходная ступеньТихоходная ступень
Коэффициент, учитывающий форму зуба и концентрацию напряженийYFSШ4,754,04
К4,23.6
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линийK3,611.06
Коэффициент, учитывающий внутреннюю динамическую нагрузкуKFV3,611,06
Коэффициент нагрузкиKF13,031.12
Действующее изгибное напряжение, МПа[уF]Ш247248
К218220
Сравнение с допускаемымШ-30,6-30,6
К-37,6-37,3

Определяющим является расчет на контактную прочность зубьев. При расчете на контактную прочность недогрузка составляет -4,4% и -2,5% для быстроходной и тихоходной ступени соответственно. При расчете на изгибные и максимальные напряжения недогрузка колес более 30%. Определение геометрических и других параметров колеса и шестерни.

Значения линейных размеров в миллиметрах

НазваниеФормулаБыстроходная ступеньТихоходная ступень
Делительный диаметр шестерни4734,5
Делительный диаметр колеса180157,5
Диаметр вершин шестерни5637,5
Диаметр вершин колеса201160,5
Диаметр впадин шестерни4830,75
Диаметр впадин колеса198153,75

4. Проектирование валов

4.1 Проектировочный расчет валов

Определим диаметры валов из расчета только на кручение по следующей формуле:

,

где

– момент сопротивления круглого сечения при кручении.

Значение условного допускаемого напряжения выбирают из диапазона

· быстроходный: примем ;

· на промежуточном: примем ;

· на тихоходном: примем .

После определения минимальных значений диаметров валов нам необходимо спроектировать вал с расчетом на свободную установку зубчатого колеса (шестерни), подшипников и уплотнений, а так же точной фиксации всех элементов в осевом направлении на нем. Для этого сделаем вал со ступенчатым изменением диаметров по длине.

5. Выбор типа и схемы установки подшипников

В первом приближении выберем подшипники, подходящие по диаметру вала:

· на быстроходный вал подшипники легкой серии;

· на промежуточный – легкой;

· на выходной – средней.

При дальнейших расчетах нагрузки, действующей на них, будем подбирать наиболее оптимальные подшипники, удовлетворяющие всем условиям.

Так как в конструкции редуктора используются прямозубые передачи, то основными нагрузками, действующими на подшипники, будут радиальные силы и окружные силы, а осевые силы будут незначительными. Поэтому выберем шариковые радиальные однорядные подшипники:

В конструкции имеются и конические передачи, в которых имеют местоосевые силы,поэтому на быстроходный и промежуточный валы устанавливаем шариковые радиально – упорные подшипники.

6. Выбор муфт

Муфты подбираются по диаметру вала и расчетному значению вращающего момента, который для каждого типа муфт определяется по определенной формуле.

.

Выбираем упругую муфту с торообразной оболочкой Муфта 8–1–38–1-У2 ГОСТ 20884–82, так как она имеет более простую конструкцию и малую стоимость, а также содержит небольшое количество деталей, что снижает вероятность выхода ее из строя. [3]

Расчетное значение вращающего момента

.

Выбираем компенсирующую упругую втулочно-пальцевую муфту, так как она имеет допускаемое радиальное смещение. Муфта 250–32–58-У3 ГОСТ 21424–75. [3]

7. Подбор подшипников качения на заданный ресурс

Подшипник – это техническое устройство, являющееся частью опоры, которое поддерживает вал, ось или иную конструкцию, фиксирует положение в пространстве, обеспечивает вращение, качание или линейное перемещение (для линейных подшипников) с наименьшим сопротивлением, воспринимает и передаёт нагрузку на другие части конструкции.

Стандартные подшипники выбираем по динамической грузоподъемности. Она определяется следующим образом:

;

где

– расчетный ресурс;

– для шариковых подшипников;

– коэффициент надежности, – для надежности 0.9;

– коэффициент, учитывающий качество материала подшипников, смазочный материал и условия эксплуатации, - для обычных условий эксплуатации;

– эквивалентная нагрузка для радиальных подшипников,

– радиальная нагрузка,

– коэффициент вращения, – при вращении внутреннего кольца,

– коэффициент безопасности, учитывающий характер нагрузки;

– температурный коэффициент (при ).

В расчете участвует сила , которую создает муфта, зависит от типа муфты. Необходимо приложить ее в месте, где она может иметь наибольшее влияние. Точка приложения – середина шпонки.

Расчетной схемой для вала, опирающегося на подшипники, является балка на двух опорах. Из действующих сил (нормальные и силы трения) рассматривают только нормальные силы. Это связано с тем, что коэффициент трения в зубчатом зацеплении очень мал благодаря отполированным поверхностям зубьев и хорошей смазки.

Быстроходный вал

Схема
ВалРазмФормулаРезультат
aммРазмеры взяты с компоновочного чертежа редуктора34,99
b80
c=d24,74
FtН340,643
Fr119,99
Fа31,21
RAB-27,945
RAГ105,319
RBB147,935
RBГ-445,979
Rэ458,246
P595,72
L2851,589
Cp9548,1
№ подш-ка36205
Сp(Н)9100

Промежуточный вал

Схема
aммРазмеры взяты с компоновочного чертежа редуктора23,53
b46,45
с22,97
Ft1/Ft2Н340,643/1,635
Fr1/Fr231,21/0,6
RABН93,434
RАГ-254,006
RВB-124,489
RВГ-85,0017
RA267,852
P348,2071
L3602,308
CPН5581,03

Подшипника

36203К6
CP, (Н)5750

Тихоходный вал

Схема
ВалРазм.ФормулаРезультат
aммРазмеры взяты с компоновочного чертежа редуктора26
b26
с63
FtН1.635
Fr0.6
Fm

Для муфты

114.29
RAB-0.3
RАГ-139.284
RВB-0.3
RВГ251.939
RA287.878
P374.241
L27715.08
Cp5998.294

Подшипника

1000908
CP, (Н)12200

8. Расчет шпоночных соединений

Шпонка – деталь, предназначенная для передачи крутящего момента между валом и установленной на нем детали (зубчатое колесо, полумуфта).

Основным расчетом для шпонок является расчет на смятие в предположении равномерного распределения давления по поверхности контакта боковых граней шпонки. Высота (h) и ширина (b) подобраны таким образом, чтобы при расчете на смятие шпонку не нужно было бы рассчитывать на срез (ГОСТ 23360–78)

, откуда расчетная длина шпонки равна

, где

Т – вращающий момент на валу;

– допускаемое напряжение смятия;

- предел текучести материала шпонки.

Материалом шпонок назначим Сталь 45 ГОСТ 1050–88. МПа.

Сопрягаемый элементd, ммСтандартные bxhДлина, ммОбозначение
Стандартная (диапазон)РасчетнаяПринятая
Упругая полумуфта225х510–565,310

Шпонка

5х5х10

ГОСТ 23360–78

Колесо быстроходной ступени206х614–701414

Шпонка 6x6x14

ГОСТ 23360–78

Колесо тихоходной ступени4412х828–14017,628

Шпонка

12х8х28

ГОСТ 23360–78

Компенсирующая полумуфта3210х822–11022

Шпонка

10х8х22

ГОСТ 23360–78

9. Проверочный расчет валов

Условие статической прочности выглядит так:

,

где

– запас статической прочности;

– предел текучести материала.

Для проверочного расчета валов составим расчетную схему. Вал представим как балку на двух опорах. Построим эпюры изгибающих и крутящих моментов.

Опасным является сечение вала рядом с опорой В-галтель. Величины реакций опор нам известны из проверочного расчета подшипников. Выполним проверку вала на прочность в этом сечении.

Мг, Нмм3621,384
МВ, Нмм7200,27
, Нмм7447,501
2
d, мм40
, МПа28,856
, МПа30ХГСА600
S

4,9>1,5

условие прочности удовлетворяется

Расчет на сопротивление усталости проводят в форме проверки коэффициента запаса прочности по усталости.

При совместном действии изгиба и кручения запас усталостной прочности определяется по формуле

, где

– коэффициент запаса по нормальным напряжениям;

– коэффициент запаса по касательным напряжениям;

– предел выносливости материала при изгибе;

– предел выносливости материала при кручении;

– коэффициенты чувствительности к асимметрии цикла напряжений; – амплитудные напряжения;

– средние значения напряжений.

Напряжения кручения изменяются пропорционально изменению нагрузки. В большинстве случаев трудно установить действительный цикл нагрузки машины в условиях эксплуатации, тогда расчет выполняют условно по номинальной нагрузке, а цикл напряжений принимают симметричным для напряжений изгиба и отнулевым для напряжений кручения.

– суммарные коэффициенты, учитывающие влияние всех факторов на сопротивление усталости при изгибе и кручении – коэффициенты перехода от пределов выносливости образца к пределу выносливости детали;

– коэффициент абсолютных размеров поперечного сечения;

– коэффициент влияния шероховатости поверхности;

– коэффициент влияния упрочнения, вводимый для валов с поверхностным упрочнением;

– эффективные коэффициенты концентрации напряжений.

Механические характеристики стали 30ХГСА: твердость НВ не менее 240;

МПа, Мпа, Мпа, Мпа;

, .

Проведем расчет вала на усталостную прочность. Коэффициенты в формулах выбираются в зависимости от концентратора напряжений.

Место расположенияшпонка
, Мпаиз справочника550
, Мпаиз справочника320
, Мпа16,108
, Мпа16,544
0,7
1
2
2,3
2,15
1,643
1,536
12,091
7,622

6>1.5

Условие прочности удовлетворяется

10. Расчет и конструирование элементов корпусных деталей и крышек подшипников

электродвигатель вал передача подшипник

Корпусные детали предназначаются для обеспечения правильного взаимного расположения сопряженных деталей редуктора, восприятия нагрузок, действующих в редукторе, защиты рабочих поверхностей зубчатых колес и подшипников от инородных частиц окружающей среды, защиты от выброса масла в окружающую среду при работе редуктора, отвода теплоты, а также для размещения масляной ванны.

Корпус редуктора состоит из собственно корпуса и крышки, которые отливаются из чугуна. Основными элементами корпуса являются его стенки, лапы, фланец корпуса, прилегающая к фланцу крышка и гнезда для подшипников с ребрами жесткости. В нижней части корпуса имеется резьба для маслоспускной пробки. Предусмотрен также прилив для маслоуказателя.

Для транспортировки корпусных деталей и редуктора в сборе его крышка снабжена подъемными ушами.

Габаритные размеры корпусных деталей выясняются при компоновке редуктора, они в основном определяются типом, размерами и относительным расположением деталей передачи.

Максимальный крутящий момент:

ЭлементФормулаЗначение
Толщина стенки корпусаРасч.3,77
Прин.6
Толщина стенки крышкиРасч.3,4
Прин.6
Толщина ребраРасч.4.8
Прин.5
Диаметр фундаментных болтовРасч.8
Прин.12
Диаметр фланцевых болтовРасч.6,35
Прин.10
Толщина фундаментных лапРасч.18
Прин.18
Толщина фланцаРасч.15
Прин.15
Толщина подъемных ушейРасч.10
Прин.10
Ширина фланцаРасч.32,4
Прин.33

11. Выбор смазочных материалов и системы смазывания

Смазочные материалы применяют с целью уменьшения интенсивности изнашивания, снижения сил трения, отвода от трущихся поверхностей теплоты и продуктов изнашивания, а также для предохранения деталей от коррозии. Снижение сил трения благодаря смазке обеспечивает повышение КПД машины. Кроме того, стабильность коэффициента трения и демпфирующие свойства слоя смазочного материала между взаимодействующими поверхностями способствуют снижению динамических нагрузок, увеличению плавности и точности работы машины.

Применим комбинированный способ смазки. Зубчатые колеса погружаются в масло, залитое в нижнюю часть корпуса (картер). А смазка подшипников качения осуществляется маслом, которое разбрызгивается зубчатой передачей. По времени – это непрерывное смазывание.

Емкость ванны для масла такова, при которой на каждый киловатт передаваемой мощности приходится 0,5 л масла. Таким образом, в картер необходимо залить масло в количестве 0,5∙5=1,25 л.

Экономичность и долговечность машины в большой степени зависят от правильности выбора смазочного материала. Поэтому масло следует выбрать исходя из рекомендации справочников

Из рекомендуемого выбираем масло РП-150. Ту38–01451–79.

Но для надёжного смазывания масла наливаем так, чтобы зубчатое колесо окуналось в него на всю ширину венца. Кол-во масла контролируем при помощи щупа.

12. Расчет и конструирование исполнительного органа привода

Исполнительным органом привода конвейера для транспортирования грузов является барабан. Барабан служит для придания движения транспортировочной ленте.

Ширина барабана равна 350 мм, диаметр барабана D=160 мм. (по усл.)

Вал барабана нагружен таким же крутящим моментом, как и выходной вал редуктора. Поэтому при приближенном расчете получим то же среднее значение диаметра. Принимаем: диаметр входного конца вала (по муфте) 60 мм; диаметр в месте посадки подшипников 70 мм. Длины участков определяем в процессе конструирования.

Приводной вал имеет большую длину и подвержен значительным прогибам под действием внешних нагрузок, поэтому подшипники должны допускать значительные перекосы. В связи с этим выбираем радиальные двухрядные сферические шарикоподшипники.

Необходимо определить динамическую грузоподъемность, чтобы подобрать из стандартных соответствующий подшипник.

Для определения нагрузок, действующих на опоры, вал на подшипниках заменяем балкой на опорах.

Рассмотрим расчетную схему приводного вала.

Усилие S0=Р/2=*1500/2=750 Н.

Усилие от муфты Fм=114,29 Н.

Определим реакцию в опоре В.


Аналогично определяем реакцию Rа=877,5

Динамическая грузоподъемность подшипника

, где

– коэффициент, вводимый при необходимости повышения надежности – для надежности 0.9,

– коэффициент, учитывающий качество материала подшипников, смазочный материал и условия эксплуатации – для обычных условий работы,

Динамическая грузоподъемность.

(Н).

Выбираем радиальный двухрядный сферический подшипник средней серии, имеющий обозначение №53507 ГОСТ 24696–81 (Рис. 15) и следующие данные:

· динамическая грузоподъемность ;

· внутренний диаметр ;

· наружный диаметр ;

· ширина ;

Фиксация вала осуществляется двумя сферическими двухрядными подшипниками. Выбираем из стандартных корпуса типа ШМ 140 ГОСТ 13218.1–80 и крышки торцовые ГОСТ 18512–73 [1]

Одну из опор выполняем фиксирующей (после полумуфты), а вторую – плавающей. Плавающая опора компенсирует погрешности изготовления и температурные деформации.

Расстояние между опорами 455 мм.

13. Конструирование плиты

Установочная рама предназначена для объединения механизмов привода в установку, монтируемую на фундаменте.

Конструкция установочной плиты разрабатывается на основе эскизной компоновки.

Сначала вычерчиваем контур электродвигателя, затем в соединении с валом электродвигателя муфту, контур редуктора. В результате выясняем разность высот центров осей электродвигателя и редуктора и расстояние между болтами их крепления к плите.

Места под крепеж необходимо фрезеровать. Крепление сборочных единиц выполняют болтами. Крепление рамы к фундаменту выполним фундаментными Г-образными болтами.

Выводы

В данной курсовой работе был спроектирован конвейер для транспортировки грузов. Особенного расчета потребовал редуктор.

Прочность конструкции обеспечивается применением разнообразных сталей и чугунов. Ответственные детали рассчитаны с учетом множества факторов влияющих на работу этих деталей. Конструирование производилось из условия минимума массы. Максимально использовались стандартные детали и узлы: подшипники, корпуса, торцевые крышки, крепежные изделия; что позволяет существенно снизить стоимость агрегата и обеспечить высокую точность в соединениях. Поверхности зубчатых колес имеют высокое качество поверхности и подвергаются смазке картерным способом. Для обеспечения герметичности стыки уплотняются герметиком, в местах выхода и входа валов применяются манжеты. Редуктор имеет проушины для транспортировки. На крышке расположено смотровое окно для проведения осмотра состояния зубчатых колес, подшипников и валов.

К недостаткам редуктора можно отнести высокий уровень шума, так как зубчатые колеса быстроходной ступени имеют малую жесткость в виду больших радиальных габаритов и малой ширины. Поэтому может возникать шум высокой частоты. Этот недостаток можно устранить дополнительной шумоизоляцией стыков, либо накрыть редуктор шумопоглощающим кожухом.

Для привода конвейера был спроектирован барабан и подшипниковые узлы. Барабан состоит из оболочки и торцевых крышек, которые свариваются между собой и привариваются к валу. Подшипники рассчитаны на заданный ресурс и имеют возможность компенсации угловых смещений вала, что положительно при наличии перегрузок, позволяет устанавливать привод на раму с меньшими требованиями по точности.

Данный конвейер можно применять в цехах при серийном, массовом производствах в целях увеличения продуктивности труда путем уменьшения времени переходов при транспортировочных операциях.

Список литературы

1. Анурьев В.И. Справочник конструктора-машиностроителя. В 3-х т. – М.: Машиностроение, 1979.

2. И.П. Копылов и др. Справочник по электрическим машинам. Том I М. Энергоатомиздат, 1988 – 456 с.

3. А.Е. Шейнблит. Курсовое проектирование деталей машин. М.: «Высшая школа», 1991.432 с.

4. Назин В.И. Проектирование подшипников и валов. Учебное пособие. – Х.: «ХАИ», 2004. – 220 с.

5. Кузьминов Ф.Ф., Пшеничных С.И. Подбор муфт. Конструкция, основы расчета. Учеб. пособие по курсовому и дипломному проектированию. – Х.: «ХАИ», 2006. – 103 с.

6. Курсовое проектирование деталей машин. Под общей редакцией В.Н. Кудрявцева. Учеб. пособие для машиностроит. специал. вузов. – Л.: Машиностроение, 1984. – 400 с.

7. Иванов В.Н. и Иванов М.Н. Детали машин. Курсовое проектирование. Учеб. пособие для машиностроит. вузов. – М.: «Высшая школа», 1975. – 551 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно