Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами

Тип Реферат
Предмет Информатика
Просмотров
866
Размер файла
55 б
Поделиться

Ознакомительный фрагмент работы:

Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами

План

  • Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами
  • Характеристичне рівняння
  • Загальний розв’язок лінійного однорідного диференціального рівняння з постійними коефіцієнтами

1. Лінійні диференціальні рівняння з сталими коефіцієнтами

Такі рівняння дуже часто зустрічаються в практиці й розв’язуються досить просто. Розглянемо окремі однорідні й неоднорідні рівняння, причому для простоти опинимося детально на диференціальних рівняннях другого порядку.

1.1. Лінійні однорідні рівняння другого порядку з постійними коефіцієнтами

Нехай маємо диференціальне рівняння вигляду

(12.38)

де і - сталі числа. Знайдемо два лінійно незалежних розв’язки цього рівняння . Будемо шукати розв’язок рівняння (12.38) у вигляді експоненти де - поки що невідома стала. Похідна будь-якого порядку від такої функції містить , а це дозволяє легко знайти розв’язок (12.38).

Справді, запишемо та :

Підставляючи ці похідні, а також функцію в рівняння (12.62), одержимо

Оскільки маємо

(12.39)

Рівняння (12.39) називається характеристичним відносно рівняння (12.38). Це – квадратне рівняння. Можливі такі ситуації відносно його коренів:

1) і - дійсні, причому не рівні між собою числа ;

2) і - комплексні числа ();

3) і - дійсні рівні числа

Зупинимося детально на кожному із цих трьох випадків.

1) Корені характеристичного рівняння дійсні й різні:

Відповідні частинні розв’язки та

лінійно незалежні, бо

Загальний розв’язок рівняння (12.38) має вигляд

(12.40)

де і - довільні сталі.

2) Корені характеристичного рівняння – комплексні числа. Нехай . Частинні розв’язки і є комплексними функціями дійсного аргументу:

або

Неважко переконатися, що функція та , які є відповідно дійсною та уявною частинами розв’язку , також задовольняють рівнянню (12.38). Справді, якщо яка-небудь комплексна функція є розв’язком рівняння (12.38) з дійсними коефіцієнтами, то та також задовольняють це рівняння. Це випливає з таких перетворень:

а комплексна функція тоді і тільки тоді дорівнює нулеві, коли її дійсна та уявна частини дорівнюють нулеві, що й треба було довести.

Зауважимо, що розв’язки та лінійно незалежні:

Отже, загальний розв’язок рівняння (12.38) у розглядуваному випадку має вигляд

(12.41)

де і - довільні сталі.

3) Корені характеристичного рівняння дійсні й рівні: При цьому один частинний розв’язок знаходиться, як у випадку 1): Другий частинний розв’язок, лінійно незалежний від першого, будемо шукати у вигляді де - невідома функція. Знайдемо і :

Підставимо та у рівняння (12.38):

(12.42)

Оскільки - корінь характеристичного рівняння, а дискримінант дорівнює нулю (корінь кратний), то або Отже, рівняння (12.42) спрощується й після скорочення на набуває вигляду . Його загальний розв’язок отримується за допомогою інтегрування двічі і має вигляд Зокрема, якщо вибрати , розв’язок буде лінійно незалежним відносно :

Загальний інтеграл диференціального рівняння (12.38) у разі кратних коренів має вигляд

(12.43)

Приклад 1. Розв’язати рівняння:

а) б) в)

У прикладі а) характеристичне рівняння має вигляд або Звідси маємо (випадок1).

Згідно з формулою (12.40) загальним розв’язком рівняння буде функція .

У прикладі б) запишемо характеристичне рівняння Його корені – комплексно спряжені числа: (випадок 2). При цьому Загальний розв’язок рівняння згідно з формулою (12.41) буде

У прикладі в) корені і характеристичного рівняння збігаються: Загальний розв’язок згідно з формулою (12.43) має вигляд

Приклад 2. Матеріальна точка маси рухається прямолінійно, притягуючись до нерухомого центра силою, пропорційною відстані від точки до цього центра. Знайти закон руху точки.

Р о з в ‘ я з о к. Згідно з умовою сила, з якою притягується точка, подається у вигляді , де - коефіцієнт пропорційності, - відстань від точки до центра. За допомогою другого закону Ньютона запишемо рівняння руху точки (- час)

.

Це однорідне диференціальне рівняння другого порядку з постійними коефіцієнтами. Для зручності подамо його у вигляді

(12.44)

Цьому диференціальному рівнянню відповідає таке характеристичне рівняння

причому Корені та - комплексно спряжені числа Отже, загальний розв’язок рівняння (12.68) має вигляд

(12.45)

Знайдемо частинний розв’язок рівняння (12.44), який задовольняє початковим умовам .

Поклавши у рівність (12.45), отримаємо Про диференціюємо обидві частини (12.45):

При звідси Отже, шуканим розв’язком задачі Коші буде


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную по Английскому. С-07505

Контрольная, Английский язык

Срок сдачи к 17 янв.

только что

Тема: Воспитание дружеских взаимодействий дошкольников

Курсовая, Педагогика

Срок сдачи к 16 янв.

1 минуту назад

Выполнение 6 работ в программе Statistica

Контрольная, Программные статистические комплексы

Срок сдачи к 20 февр.

1 минуту назад

Решить 3 задачи.

Решение задач, Физика

Срок сдачи к 22 янв.

1 минуту назад
1 минуту назад

Контрольная под дисциплине Механика жидкости и газа

Контрольная, Механика жидкости и газа

Срок сдачи к 20 янв.

1 минуту назад

Производственная практика

Отчет по практике, Психология и педагогика

Срок сдачи к 18 янв.

2 минуты назад
2 минуты назад

Выполнить контрольную по Английскому. С-07504

Контрольная, Английский язык

Срок сдачи к 17 янв.

2 минуты назад

Решить задачи

Решение задач, Международное право

Срок сдачи к 16 янв.

2 минуты назад

Написать отзыв по статье на 1,5-2 листа

Другое, Дефектология

Срок сдачи к 18 янв.

3 минуты назад

Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"

Контрольная, Теплотехника и хладотехника

Срок сдачи к 19 янв.

4 минуты назад

3 задачи

Решение задач, Теоретическая механика

Срок сдачи к 18 янв.

4 минуты назад

Теплофизика

Решение задач, Теплофизика

Срок сдачи к 15 янв.

5 минут назад

Лабораторная работа № 1.1 Модуль: Основы логического мышления

Решение задач, Введение в специальность, логика

Срок сдачи к 15 янв.

5 минут назад

Том каулитц

Контрольная, Математика

Срок сдачи к 18 янв.

6 минут назад

сделать лабораторные работы

Лабораторная, Цифровая культура в профессиональной деятельности, культурология

Срок сдачи к 25 янв.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно