Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основные положения и законы теории массообмена

Тип Реферат
Предмет Промышленность и производство
Просмотров
1547
Размер файла
22 б
Поделиться

Ознакомительный фрагмент работы:

Основные положения и законы теории массообмена

ОСНОВНЫЕ ПОЛОЖЕНИЯ И ЗАКОНЫ ТЕОРИИ МАССОПЕРЕНОСА

1. Общие сведения

В природе и технике наряду с теплообменными широко распространены и массообменные процессы. Очень часто они идут совместно, и от интенсивности одних зависит скорость других. В природе это, например, - процессы переноса теплоты и массы воздушными и водяными течениями и процессы окисления веществ в живых организмах. В технике — процессы восстановления металлов из руд и окисления (горения) топлив, примесей и железа при плавке и нагреве стали.

В теории массообмена различают массоотдачу и массопередачу. Массоотдача — пе­ренос массы в пределах одной фазы (гомогенный массоперенос), а массопередача — пе­ренос одного или нескольких веществ из одной фазы в другую через поверхность раздела фаз (гетерогенный массоперенос).

Состав фаз выражают: в объемных концентрациях, кг/мэ или кмоль/м3; в массовых или мольных долях, кг/100 кг или кмоль/ЮО кмоль. Состав газовых смесей выражают парциальными давлениями.

Основную часть жидкой или газообразной фазы, в которой поле концентраций компонентов постоянно, называют ядром. Дело в том, что на поверхности раздела

фаз концентрации компонентов отличаются от концентраций этих же веществ в ядрах. Изменение концентраций от значений на границе до их величины в ядре происходит в пределах тонкого пограничного слоя между поверхностью раздела фаз и ядром. Несмотря на относительное перемещение фаз, режим движения в концентрационном пограничном слое очень часто сохраняется ламинарным.

Перенос массы между фазами происходит до наступления подвижного равновесия, при котором из одной фазы во вторую переносится столько же вещества, сколько его пере­ходит на второй фазы в первую. Массообмен в пределах одной фазы заканчивается после выравнивания концентраций по всему объему.

Массообмен — самопроизвольный процесс переноса какого-либо вещества в форме молекул, атомов, ионов в пространстве с неоднородной концентрацией этого вещества. Массообмен имеет место и при неоднородных полях температур и давлений в рассматри­ваемом объеме.

Молекулярную диффузию под действием неоднородного распределения концентра­ций в объеме называют концентрационной диффузией. Если причиной диффузии явля­ются разности'(градиенты) температур или давлений, то эти виды диффузионного переноса вещества называют термо- или бародиффузией. Вещество может переноситься под одновременным воздействием нескольких градиентов: концентраций, температур и давлений.

Перенос массы помимо молекулярной диффузии может также осуществляться движущимися массами (конвекцией). Совместный перенос массы молекулярной диффузией и конвективным переносом называют конвективным массообменом.

Молекулярная диффузия имеет место в неподвижных потоках или в пограничных слоях, находящихся вблизи границы раздела фаз. Она обусловливается беспорядочным движением частичек переносимого вещества. Перенос вещества под действием турбу­лентных пульсаций называют турбулентной диффузией.

Направление переноса вещества внутри фазы или между фазами определяется градиентом его концентраций в отдельных точках системы. Вещество всегда переходит из фазы, где его содержание выше равновесного, в фазу или область, в которых его концентрация ниже равновесного значения (или от большего градиента к меньшему).

Скорость массопередачи связана с механизмом переноса распределяемого вещества между фазами, между которыми происходит массообмен.

Наиболее распространенные процессы массопередачи в металлургии: абсорбция — поглощение газа жидкостью; адсорбция — поглощение газов, паров или жидкостей твердыми поглотителями; восстановление — удаление кислорода из оксидов металлов (руд); десорбция — процесс обратной абсорбции и адсорбции; насыщение — обогащение поверхностных слоев стали одним или несколькими химическими элементами; окис­ление — соединение горючего вещества с окислителем, например, при горении топлива в рабочем пространстве печей или горение некоторых химических элементов в распла­вах (стали, штейне и т.д.); растворение твердых веществ в жидкостях; сушка - удале­ние влаги из твердых материалов путем ее испарения.

Многие технологические процессы в металлургии реализуются несколькими одно­временно протекающими гетерогенными процессами массопереноса. Причем направ­ление переноса веществ из фазы в фазу определяется его концентрациями в фазах и условиями равновесия. Перенос массы в процессах сопровождается переносом энергии.

Плотность потока массы, кг/(м2 • К), вещества т, переносимого молекулярной диффузией в бинарных (двухкомпонентных) смесях, можно определить по первому закону Фика:

m^-D^dc/dri), (5.1)

где Dj — коэффициент диффузии i-того компонента, м2/с; dc/dn — градиент концентра­ций, кг/м4.

Смысл коэффициента диффузии, кг • м/[(кг/мэ) • с], можно понять из формулы D = mdn/dc.

Следовательно, он определяет количество вещества, диффундирующего в единицу времени через единицу поверхности при градиенте концентраций, равном 1. Это физи­ческая константа, не зависящая от гидродинамических условий массопереноса. Бе значение зависит от вида переносимого вещества, свойств среды, через которую оно диффундирует, температуры и давления. Коэффициенты диффузии газа в среду другого газа составляют 0,1 — 1 см2/с, а диффузии газа в жидкости ~ 1 см2/(сут), т.е. в 1 - 105 меньше. Следовательно молекулярная диффузия — весьма медленный процесс.

Обычно величина коэффициента диффузии в газах в литературе приводится для Г0 = 273 К и р0 = 1 • 105 Па. Поэтому ее обозначают DQ. Значения D при иных давлениях можно вычислить по формуле

D = D0(p/P0)3'2.

В справочниках коэффициенты диффузии в жидкостях даны для температуры 20 °С (р20). Пересчитать эту величину для другой температуры можно по формуле

D = D3O[l + d(r-20)],

где d = 6,33 |i0'5/p°>33.

В последнем выражении ц — динамический коэффициент вязкости растворите­ля, Па • с; р — плотность растворителя, кг/м3.

Для газовых фаз закон Фика можно выразить с помощью уравнения состояния идеальных газов.

Концентрация какого-либо компонента фазы, кг/м3,

с = 1/у = р/(ЯГ).

Здесь v — удельный объем компонента при его локальном парциальном давлении р, м3/кг; R — газовая постоянная, Дж/(кг ■ К); Т — температура компонента, К; р — местное парциальное давление диффундирующего компонента, Па. При Г- const

— = (RT)-4p/un и m—[D/(«T)]dp/dn = -D dp/dn. dn

Здесь Dp — коэффициент молекулярной диффузии газа в газе, отнесенный к градиенту парциального давления, с.

Для бинарной смеси (состоящей из двух компонентов) коэффициенты диффузии
компонентов и Dp неодинаковы вследствие различия газовых постоянных.

Поэтому их отношение, при D г = D2

где Ц1 и Ц2 — молекулярные массы компонентов бинарной смеси, кг/моль.

Знак минус с правой части закона Фика указывает на то, что поток массы и градиент концентрации направлены в противоположные стороны.

Для бинарной смеси справедливо соотношение D1 = D2, т.е. коэффициенты диффузии взаимно диффундирующих веществ равны. Для многокомпонентной смеси это соотно­шение не выполняется.

Плотность потока массы, переносимой в пределах фазы турбулентной диффузией,

m = -DT(dc/dn), (5.2)

где Dx — коэффициент турбулентной диффузии, зависящий только от гидродинами­ческих условий процесса (с* орости потока, масштаба турбулентности), м2/с. Известно, 4ToDI>D.

В жидкостях и газах суммарный перенос массы молекулярной и конвективной диффузией определяется выражением

m ■ mM + mK = — Ddc/dn + cw, (5.3)

где mR — плотность потока массы, переносимой конвективной диффузией, С — кон­центрация диффундирующего вещества внутри фазы, кг/м3; w — скорость потока вещества внутри фазы, м/с.

В (5.3) градиент концентрации и скорость потока противоположны по направлению.

Движение потока значительно увеличивает перенос массы, поэтому тк ~> тм.

Плотность потока массы, кг/(м2 • с), внутри фазы, например, от поверхности раздела в ядро, можно вычислить по уравнению

т = В(сп0). (5.4)

Здесь (сп — cQ) — разность концентраций, являющаяся движущей силой процесса; с. — средняя концентрация в ядре потока; сп — средняя концентрация на поверхности раздела фаз; В — коэффициент массоотдачи. Он определяет количество массы, перено­симой от поверхности раздела фаз в ядро фазы (или в обратном направлении) через единицу поверхности в единицу времени при движущей силе (сп — cQ) равной единице. Он не является физическим свойством вещества; это — кинетическая характеристика, зависящая не только от свойств фазы, но и от гидродинамических условий течения потока. Этот коэффициент учитывает как молекулярный, так и турбулентный перенос вещества. Коэффициент массоотдачи может быть выражен в разных единицах в зависимости от выбранной системы выражения движущей силы процесса переноса вещества. В общей форме

В = m/Дс = кг [м2 • с (е.д.с.)], где е.д.с. — единицы движущей силы.

Если движущей силой процесса переноса является разность объемных концентраций, кг/м3, то коэффициент массоотдачи, м/с, обозначают р0. Если же разность концентраций выражена в относительных единицах (кг/кг или кмоль/кмоль), то коэффициент массо­отдачи, кгДм2 • с), обозначают Рс или рт соответственно. Если же движущей силой переноса является разность парциальных давлений, Па, то коэффициент массоотдачи, с/м, обозначают Рр.

Уравнение (5.4) — аналог уравнения Ньютона - Рихмана.

Интенсифицировать массообменные процессы можно за счет повышения коэффи­циента массоотдачи или увеличения площади поверхности, воспринимающей или отдающей массу, так как разность концентраций устанавливается условиями техноло­гического процесса. Чаще всего прибегают к увеличению поверхности массообмена /, осуществляя, например, обработку материала в слое.

Если температура диффундирующего газа не изменяется по объему фазы, то и| уравнения состояния газа можно записать, что концентрации

сп-1/тпп/(ЙТ) и с0 = 1/у0 = р0/(ЙГ).

Поэтому разность концентраций сп - cQ = (рп - р0)/(КГ). Здесь vn и v0 - удельны! объемы диффундирующего газа при их парциальных давлениях рп и р0, м3/кг; рп и Р0 - парциальные давления газа у поверхности фаз и в ядре, Па.

При подстановке последнего соотношения в (5.4) получим формулу Дальтона для т, кг/(м2 • с):

т-[р/(йГ)](рп0) = ррп0), (5.3)

где рр — коэффициент массоотдачи, отнесенный к разности парциальных давлений.

Коэффициенты массоотдачи можно определить следующим образом. Примем, что у поверхности раздела фаз существует ламинарный концентрационный пограничный слой, перенос массы в котором происходит молекулярной диффузией в соответствии с первым законом Фика:

m - -Ddc/dn = р(с„ - с0) = р Ас. Поэтому

P = -(D/Ac)dc/dn.

Если вместо разности концентраций воспользоваться разностью парциальных давл то

рр = -(£>р/Др) dp/dn = -[Dp/(pn - p0)]dp/dn,

где Dp = D/(RT) — коэффициент молекулярной диффузии какого-либо компон фазы, отнесенный к градиенту парциального давления, с.

Из вышеизложенного хорошо просматривается аналогия между Р и коэффици конвективной теплоотдачи, поэтому для отыскания величины коэффициентов ма отдачи применимы все те методы конвективного теплопереноса, которые были расе рены ранее.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно