Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Законы движения планет

Тип Реферат
Предмет Математика
Просмотров
572
Размер файла
20 б
Поделиться

Ознакомительный фрагмент работы:

Законы движения планет

Конические сечения

Конические сечения играют в астрономии выдающуюся роль, причем не только в небесной механике, но и оптике, поэтому стоит уделить им особое внимание. Конические сечения образуются при пересечении прямого кругового конуса с плоскостью. К коническим сечениям относятся кривые второго порядка: эллипс, парабола и гипербола. Все они является геометрическим местом точек, для которых отношение расстояний их до заданной точки (фокуса) и до заданной прямой (директрисы) есть величина постоянная, равная эксцентриситету e. При e < 1 получается эллипс, при e = 1 - парабола, при e > 1 - гипербола.

Рис. 1. Эллипс.

Эллипс изображен на рис. 1. Точки A, A', B, B' - вершины эллипса, O - центр, AA' - большая ось (|OA| = |OA'| = a - большая полуось), BB' - малая ось (|OB| = |OB'| = b - малая полуось), F1 и F2 - фокусы (точки, лежащие на большой оси по обе стороны от центра на расстоянии с = (a2-b2)1/2 от него), e = c/a - эксцентриситет (е < 1), |F1D| = |F1D'| = p = b2/a - фокальный параметр (половина хорды, проведенной через фокус параллельно малой оси). Эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси: r1 + r2 = |AA'| = 2a.

Директрисы - прямые, параллельные малой оси, находящиеся на расстоянии |OS1| = |OS2| = d = a/e от нее. Если обозначить расстояния от произвольной точки эллипса М до директрис как |MK1| = d1 и |MK1| = d2 , то для любой точки М эллипса выполняется соотношение r1/d1 = r2/d2 = e.

Предельным случаем эллипса является окружность, которую можно представить как эллипс с фокусами, совпадающими с центром, поэтому для окружности

с = 0,

a = b = r1 = r2 = p,

e = 0

Директрисы для окружности не определены.

Рис. 2. Парабола.

Парабола изображена на рис. 2. OX - ось параболы, O - вершина, F - фокус (точка, лежащая на оси на расстоянии p/2 от вершины), NN' - директриса (прямая, перпендикулярная оси и пересекающая ее на расстоянии |OS| = p/2 от вершины по другую сторону от фокуса), p - фокальный параметр (расстояние от фокуса до директрисы или половина хорды DD', проходящей через фокус перпендикулярно оси). Парабола определяется как геометрическое место точек, равноудаленных от данной точки (фокуса) и от данной прямой (директрисы): |MF| = r = |MK|. Поэтому для параболы эксцентриситет e = 1.

Рис. 3. Гипербола.

Гипербола изображена на рис. 3. AA' = 2a - действительная ось, A, A' - вершины, О - центр, F1 и F2 - фокусы (точки, лежащие на действительной оси по обе стороны от центра на расстоянии с > a от него), NN' - мнимая ось (|NN'| = 2b = 2*(c2 - a2)), p = b2/a - фокальный параметр (половина хорды, проведенной через фокус перепендикулярно действительной оси). Эксцентриситет e = c/a > 1. Гипербола определяется как геометрическое место точек, для каждой из которых разность расстояний до двух заданных точек (фокусов) есть величина постоянная и равная 2a. Если для произвольной точки М обозначить |MF1| = r1 и |MF2| = r2, то точки, для которых r1 - r2 = 2a, лежат на одной ветви гиперболы (на рис. 3 - левой), а для которых r2 - r1 = 2a - на другой ветви (правой).

Директрисы - прямые, перпендикулярные к действительной оси и расположенные на расстоянии d = a/e от центра. Для любой точки М гиперболы выполняется соотношение r1/d1 = r2/d2 = e, где d1 = |MK1| и d2 = |MK2|.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно