Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Отопление и вентиляция гражданского здания г Воронежа

Тип Реферат
Предмет Строительство
Просмотров
1038
Размер файла
374 б
Поделиться

Ознакомительный фрагмент работы:

Отопление и вентиляция гражданского здания г Воронежа

Федеральное агентство по образованию (Рособразование)

Архангельский государственный технический университет

Кафедра промышленной теплоэнергетики

Курсовая работа

По дисциплине: "Энергетические системы обеспечения жизнедеятельности"

На тему: "Отопление и вентиляция гражданского здания г. Воронежа"

Чирков Дмитрий Валентинович

курс IIIгруппа ОСП

Архангельск

2008


Содержание

1. Задание

2. Теплотехнический расчет

3. Расчет теплопотерь отапливаемых помещений

4. Расчет нагревательных приборов

5. Расчет котлов и вспомогательного оборудования

6. Расчет помещения встроенной котельной

7. Гидравлический расчет двухтрубной водяной системы отопления

8. Расчет системы вентиляции

9. Используемые источники



2. Теплотехнический расчет

Определение оптимальных ограждающих конструкций и определение общего термического сопротивления ограждающих конструкций.

Требуемое термическое сопротивление теплопередаче

, (м2·К)/Вт,

где - расчетная температура воздуха в помещении, находим по таблице 1,4 [1], оС;

- расчетная температура наружного воздуха, находим по таблице 1,3 [1], оС;

- коэффициент, учитывающий характер омывания ограждения наружным воздухом [1];

- коэффициент теплоотдачи от воздуха помещения к внутренней поверхности наружного ограждения [2], Вт/(м2·К)

- нормируемый перепад температур [3], оС.

Определяются градусо-сутки отопительного периода

,

где - средняя температура отопительного периода (таблица 1,3 [1]), оС;

- продолжительность отопительного периода (таблица 1,3 [1]), сут.

Приведенное сопротивление теплопередачедля стен


2·К)/Вт;

для чердачных перекрытий

, (м2·К)/Вт;

для окон

, (м2·К)/Вт;

В качестве расчетного требуемого термического сопротивления принимается наибольшее из двух значений и .

Определяется минимально допустимая толщина тепловой изоляции

, м

где - коэффициент теплопроводности материала изоляции, Вт/(м·К);

- коэффициент теплоотдачи от наружной поверхности ограждения к наружному воздуху (таблица 1.5 [1]), Вт/(м2·К);

- толщина материального слоя (таблица 1.14 [1]), м;

- коэффициент теплопроводности материала слоя (таблица 1.1 [1]), Вт/(м·К)

Фактическое термическое сопротивление

, (м2·К)/Вт.


Исходные данные

Внутренняя температура воздуха для большинства помещений оС.

Расчетная температура наружного воздуха для г. Воронеж оС.

Средняя температура отопительного периода оС.

Продолжительность отопительного периода сут.

Расчет стен

Коэффициент теплоотдачи от воздуха помещения к внутренней поверхности наружного ограждения Вт/(м2·К).

Нормируемый перепад температур оС, по условию принять не более 7 оС, следовательно, принимаем оС

Коэффициент, учитывающий характер омывания ограждения наружным воздухом для наружных стен .

Требуемое термическое сопротивление теплопередаче

2·К)/Вт;

Градусо-сутки отопительного периода

;

Приведенное сопротивление теплопередаче

2·К)/Вт;

В качестве расчетного термического сопротивления принимаем (м2·К)/Вт.


Принимаем следующую конструкцию стены

Рисунок 1. Разрез стены

В качестве теплоизоляционного материала принимаем пенополиуретан с коэффициентом теплопроводности Вт/(м·К) (таблица 1.4.2 [2]).

Для г. Воронеж при нормальном влажностном режиме помещений группа условий эксплуатации ограждений А (таблица 1,2 [1]).

Коэффициент теплопроводности для обыкновенного глиняного кирпича Вт/(м·К) (таблица 1.1 [1]).

Коэффициент теплопроводности для штукатурки из цементно-песчаного раствора Вт/(м·К) (таблица 1.1 [1]).

Минимально допустимая толщина тепловой изоляции

м.

Принимаем стандартную толщину теплоизоляционного материла м.

Фактическое термическое сопротивление

2·К)/Вт.

Расчет перекрытия

Коэффициент теплоотдачи от воздуха помещения к внутренней поверхности наружного ограждения Вт/(м2·К).

Нормируемый перепад температур оС, по условию принять не более 6 оС, следовательно, принимаем оС

Коэффициент, учитывающий характер омывания ограждения наружным воздухом .

Требуемое термическое сопротивление теплопередаче

2·К)/Вт;

Градусо-сутки отопительного периода

;

Приведенное сопротивление теплопередаче

2·К)/Вт;

В качестве расчетного термического сопротивления принимаем (м2·К)/Вт.

Принимаем следующую конструкцию перекрытия


Рисунок 3. Перекрытие

В качестве теплоизоляционного материала принимаем утеплитель-минералватная плита с коэффициентом теплопроводности Вт/(м·К) (таблица 1.15 [1]).

Теплопроводности материалов:

Покрытие рубероид: δиз = 6мм; Вт/(м·К) (таблица 1.1 [1]).

Железобетонная стяжка: δиз = 30мм; Вт/(м·К).

Пароизоляционный слой из пергамина: δиз = 2мм ; Вт/(м·К)

Железобетонное перекрытие: δиз = 140мм ; Вт/(м·К)

Минимально допустимая толщина тепловой изоляции

м.

Принимаем, стандартную толщину теплоизоляционного материла 0,06 м.

Фактическое термическое сопротивление

2·К)/Вт.


Расчет окон

Градусо-сутки отопительного периода

;

Приведенное сопротивление теплопередаче

2·К)/Вт;

По таблице 1.4.4 [2] выбираем двойное остекление в спаренных переплётах: (м2·К)/Вт.

Проверка наружных ограждений на конденсацию влаги

Температура внутренней поверхности ограждения вычисляется по формуле

,

где

оС.

По I-d диаграмме влажного воздуха определяем температуру точки росы оС, при относительной влажности 50%.

Следовательно, конденсации влаги происходить не будет.


3. Расчет теплопотерь отапливаемых помещений

Теплопотери рассчитываются с целью оптимального расчета и конструирования системы отопления. Тепловые потери подразделяются на основные и добавочные.

Основные теплопотери

, Вт

где - коэффициент теплопередачи ограждения, Вт/(м2·К);

- поверхность ограждения определяется по правилам линейного обмера, м2;

Для ворот и наружных дверей вместо подставляется разность коэффициентов теплопередачи окна и стены (или наружных дверей и стены).

По таблице 1,16 [1] находим: наружные одинарные ворота принимаем: к=4,65 Вт/(м2·К).

Наружные двери: к=4,65 Вт/(м2·К).

Для наружных стен Вт/(м2·К);

Для перекрытия Вт/(м2·К);

Для окон Вт/(м2·К).

Добавочные теплопотери

1. На ориентацию ограждений в отношении сторон света


Рисунок 5. Поправка на ориентацию ограждений в отношении стран света

2. На обдувание ограждения ветром зависит от скорости ветра за 3 наиболее холодных месяца и от того защищено или незащищено ограждение или нет.

По таблице 1.3 [1] находим для г. Воронеж средняя скорость ветра 5,4 м/с.

Для защищенных ограждений размер добавки 10 %.

3. На угловые помещения размер добавки 5 %.

4. В зависимости от конструкции наружного входа:

для одиночных дверей β=0,65H

Определение теплопотерь через полы, расположенные на грунте

Площадь этажа разбивается на зоны. Зона – полоса 2 м, параллельно наружным стенам. Для каждой зоны установлено свое термическое сопротивление.

Для неутепленных полов термическое сопротивление зон:

2·К)/Вт;

2·К)/Вт;

2·К)/Вт;

2·К)/Вт.


Таблица 1. Расчет теплопотерь


№ отапли-ваемо-го поме-щения

Наимено-вание помещения и tв, оСНаиме-нова-ние ограж-денияОриен-тация ограж-денияРазмеры ограждения,м.Пло-щадь ограж-дения, м2Расчёт-ная раз-ность темпе-ратур tв-tн,оСК , Вт/(м2∙ºС)Qосн , ВтДобавки, %Qдоб ВтQобщ Вт
Стра-ны светаВе-терДру-гие
101

Архив

+18

НСЮ2,2*4,59,9500,43213010532245
ДОЮ1,51,82,7502,63447010567514
Пт-2,21,02,2500,2831----31
ПлIзона2,21,02,2501/ 2,1551----51
102Склад14Пт-3,02,26,6520,2896----96
ПлIзона0,92,21,98521/ 2,1548----48
IIзона22,24,4521/ 4,353----53
IIIзона0,22,20,44521/ 8,63----3
103Буфет16Пл -2,23,88,36540,28126----126
ПтIIIзона2,21,73,74541/ 8,623----23
IVзона2,22,14,62541/ 14,317----17
104Комната отдыха18Пт-2,21,43,08560,2848----48
ПлIVзона2,21,43,08561/ 14,312----12
105Коридор18НСЮ1,74,57,65560,43184010528212
ВСЗ1,04,54,560,7119----19
ВСЗ3,15,115,8140,7145----45
НДДЮ0,92,21,98562,33258010539297
Пт-(2,8*1,6)+(11,4*1,7)23,86560,28374----374
ПлIзона1,7*23,4561/ 2,1589----89
IIзона1,7*23,4561/ 4,344----44
IIIзона(2*1,7)+(5,4*1,3)+(0,2*3,1)11,04561/ 8,672----72
IVзона(0,4*3,7)+(1,4*3,1)5,82561/ 14,323----23
106Офис16НСЮ4,94,522,05540,43512010577589
НСЗ4,64,822,08540,4351310105128641
ДОЮ1,51,82,7542,63383010557440
ДОЗ1,51,82,7542,633831010596479
Пт-4,5*4,118,45540,28279----279
ПлIзона2*(4,5+4,1)17,2541/ 2,15432----432
IIзона(2*0,6)+(2*2,1)9,2541/ 4,3116----116
IIIзона0,6*0,10,06541/ 8,60,4----0,4
107Офис16НСЗ4,25,824,36540,4356610105142708
ДОЗ1,51,82,7542,633831010596479
Пт-4,24,518,9540,28286----286
ПлIзона2*4,28,4541/ 2,15211----211
IIзона2*4,28,4541/ 4,3105----105
IIIзона0,6*4,22,52541/ 8,616----16
108Офис16НСЗ2,76,016,2540,433761010594470
ДОЗ1,51,82,7542,633831010596479
Пт-2,74,512,15540,28184----184
ПлIзона2*2,75,4541/ 2,15136----136
IIзона2*2,75,4541/ 4,368----68
IIIзона0,6*2,71,62541/ 8,610----10
109Туалет14НСЗ2,25,512,1520,432811010570351
ДОЗ1,51,82,7522,633691010592461
Пт-2,23,06,6520,2896----96
ПлIзона2,2*24,4521/ 2,15106----106
IIзона2,2*1,02,2521/ 4,327----27
110Умывальная комната16НСЗ0,95,44,86540,431131010528141
ВД-0,72,21,5472,9131----31
Пт-0,94,54,05540,2861----61
ПлIзона0,9*21,8541/ 2,1545----45
IIзона0,9*1,00,9541/ 4,311----11
111Душевая25НСС2,44,510,8630,432931010573366
НСЗ3,14,814,88630,4340310105101504
ВСС2,05,110,290,7165----65
ДОС1,51,82,7632,6344710105112559
Пт-22,85,6630,2899----99
ПлIзона(2+2,8)*29,6631/ 2,15281----281
112Раздевалка23НСС7,24,532,4610,43850101052131063
ДОС3*(1,5*1,8)8,1612,631299101053251624
ВСЮ4,75,726,7950,7195----95
ВСВ6,05,03070,71149----149
ВСВ2,35,512,6590,7181----81
ВСС1,05,15,170,7125----25
ВСВ0,95,14,5970,7123----23
ВД-0,92,21,9852,9129----29
Пт-(6,2*5,8)+(2,2*1,0)38,16610,28652----652
ПлIзона7,2214,4611/ 2,15409----409
IIзона(5,1*2)+3,7+0,614,5611/ 4,3206----206
IIIзона5,11,78,67611/ 8,661----61
113Бокс16НСС234,6105,8540,432457101056143071
НСЮ234,6105,8540,43245701053692826
НСВ185,599540,432299101055752874
ВСВ1,04,54,540,7113----13
ВСЗ0,92,21,9842,9123----23
ДОС10*(1,5*1,8)27542,633835101059594794
ДОВ4*(1,5*1,8)10,8542,631534101053841918
ВЮ5*(3,6*3)54544,65135590105203415593
Пт-2*(24*9)432540,286532----6532
ПлIзона2*(23*2+17,6)127,2541/ 2,153195----3195
IIзона2*(21*2+9,3)102,6541/ 4,3544----544
IIIзона2*(19*2+5,3)86,6541/ 8,61288----1288
IVзона17,6*5,390,1541/ 14,3340----340

4. Расчет нагревательных приборов

Расчет нагревательных приборов сводится к определению поверхности нагрева нагревательного прибора по формуле

, м2,

где - требуемая теплоотдача прибора, Вт;

- коэффициент теплопередачи прибора определяем по [3], Вт/(м2·оС);

- средняя температура теплоносителя в приборе, оС;

- температура теплоносителя на входе в нагревательный прибор, оС;

- температура теплоносителя на выходе из нагревательного прибора, оС;

- коэффициент, учитывающий остывание воды в трубах. Определяем по таблице III.20 [1] для двухтрубных систем с нижней разводкой;

- коэффициент, учитывающий способ установки нагревательного прибора. Определяем по таблице III.21 [1];

- коэффициент, учитывающий число секций в радиаторе определяем по таблице III.24 [1].

Для секционных радиаторов число секций в нагревательном приборе

,

где - поверхность одной секции, м2.


Определяется фактическая теплоотдача прибора

, Вт

где - принятое количество секций в нагревательном приборе, шт.

Расхождение между принятой и фактической теплоотдачей

.

Допустимое расхождение %

В качестве требуемой теплоотдачи прибора принимаем общие теплопотери помещения.

Для двухтрубной системы принимаем

Температура теплоносителя на входе в нагревательный прибор оС;

Температура теплоносителя на выходе из нагревательного прибора оС;

оС.

По таблице III.7 [1] определяем для чугунных радиаторов М-140 поверхность одной секции м2.


Таблица 2. Расчет нагревательных приборов

№ поме

щений

Наи

мено

вание

поме

щения и внут

ренняя темпе

ратура tв,, оС

Темпе

ратура теплоно

сителя tпр= (tг +tо)/2, оС

Рас

четный перепад темпе

ратур, tпр- tв, оС

Рас

четная тепловая нагрузка на приборы, Вт

Коэф

фициент

тепло

передачи

нагрева

тельного прибора

к пр,

Вт/(м2 . оС)

Поправочный коэффициент на остывание воды в трубах

Поверх

ность нагрева приборов Fпр, М2

Коли

чество нагре

вательных приборов и секций в приборах, шт.

Попра

вочный коэф

фициент на число секций b3

Прини

маемое коли

чество приборов и секций

Фактическая тепловая нагрузка на прибор, ВтРасхождение между расчетной и фактической тепловой нагрузкой прибора, %
Учит охлаж-дение воды в трубах β1

Учит

способ уста-новки прибо-ра β2

1011282,570,58419,91,0511,2654,98031511*58865,1
1021482,568,52009,61,0510,3191,2559060,961*222410,7
1031682,566,51669,61,0510,2731,0748030,961*1162-2,4
1041882,564,511719,61,0511,9867,8191,011*812586,9
1051882,564,5
1061682,566,529769,61,0514,89519,271651,032*1032438,2
1071682,566,518059,61,0512,96911,688981,021*1219467,2
1081682,566,513479,61,0512,2158,7204721,011*914597,7
1091482,568,510419,61,0511,6626,54330711*7116911
1101682,566,52899,61,0510,4751,8700790,961*232410,9
1112582,557,518099,21,0513,59114,13781,011*1418813,8
1122382,559,542889,21,0518,22532,381891,033*1145886,5
1131682,566,5429759,61,05170,683278,27951,03

12*20

2*19

450794,7

5. Расчет котлов и вспомогательного оборудования

Суммарная поверхность нагрева котлов определяется по формуле [1]

, м2

где - коэффициент запаса на производительные потери тепла при нижней разводке трубопроводов;

- расчетное количество тепла, ккал/ч;

- тепловое напряжение поверхности нагрева, ккал/(м2·ч).

В качестве расчетного количества тепла принимаем суммарные теплопотери всего здания .

По таблице V.13 определяем тепловое напряжение поверхности нагрева.

Для котлов типа КЧМ-2 при сжигании сортированного антрацита:

ккал/(м2·ч).

м2

По таблице V.2 принимаем 2 чугунных котла КЧМ-2 . Поверхность нагрева каждого котла 4,23 м2, максимальная теплопроизводительность при сжигании сортированного антрацита 45000 ккал/ч.

Расчет дымовой трубы.

Площадь поперечного сечения выходного отверстия дымовой трубы


, см2,

где - тепловая нагрузка котельной, ккал/ч;

- высота трубы от уровня колосниковой решетки до верха оголовка трубы, м.

см2.

Принимаем кирпичную дымовую трубу с размерами в кирпичах , площадь сечения выходного отверстия 729 см2.

Площадь сечения борова

, см2

где - теплопроизводительность котлов, обслуживаемых расчетным участком борова, ккал/ч.

Диаметр борова .

Площадь сечения и диаметр борова на участке котел - общий боров

см2,

см.

Подбор расширительного бака

Расширительные баки предназначены для вмещения избыточного объема воды при ее температурном расширении в системе водяного отопления.


Емкость расширительного бака определяется по формуле

, л

где - объем воды в элементах системы отопления.

Для перепада температур воды в системе 95-70оС

л.

л.

Принимаем стандартный расширительный бак марки 1Е010 с полезной емкостью 67 л. Размеры бака D×H = 645×710 мм.

6. Расчет помещения встроенной котельной

Часовой расход топлива

, кг

где - расход тепла, ккал/ч;

- средняя низшая теплота сгорания топлива ккал/кг;

- кпд котельной установки [1].

По таблице V.23 [1] для антрацита находим ккал/кг.

кг.


Площадь склада для твердого топлива на месячный запас

, м2,

где - объемная масса топлива, принимаемая по таблице V.23 [1], кг/м3;

- высота штабеля в зависимости от рода топлива, м.

Для антрацита кг/м3, м.

м2.

Расход твердого топлива за отопительный период

, т

где - коэффициент, учитывающий непроизводительные потери тепла;

- теплопотери здания, ккал/ч;

- средняя внутренняя температура отапливаемых помещений, оС;

т.

Объем воздуха для дутья


3

где - коэффициент, избытка воздуха в топке;

- температура воздуха под потолком котельной принимается 20 оС;

- барометрическое давление принимаем 745 мм рт. ст. ;

- теоретический объем воздуха необходимого для сгорания

м3

7. Гидравлический расчет двухтрубной водяной системы отопления

Целью гидравлического расчета является:

1. Определение оптимальных диаметров трубопроводов;

2. Определение потерь давления в системе.

Для проведения гидравлического расчета вычерчивается аксонометрическая схема системы отопления с нанесением всех элементов системы.

Первоначально выбирается расчетное циркуляционное кольцо наиболее протяженное и нагруженное. Расчетное кольцо разбивается на расчетные участки – трубопроводы постоянного сечения с постоянным расходом среды. Определяется тепловая нагрузка участка, под которой понимается фактическая теплоотдача приборов, обслуживаемых данным участком.

Определяется расход среды на участке

, кг/ч,


где - тепловая нагрузка участка, Вт;

кДж/(кг·К) - теплоемкость воды;

Диаметры трубопровода на участке , скорости движения воды , потери давления от трения на 1 м трубы определяются по таблице III.60 [1].

Потери давления от трения

, кгс/м2

где - длина расчетного участка, м.

- потери давления от трения на 1 м трубы, кгс/м2;

Значения местных сопротивлений на участке определяются по таблице III.65 [1].

Потери давления на местные сопротивления

,

где - сумма местных сопротивлений участка;

- скоростное давление определяется по таблице III.61 при , кгс/м2;

Потери давления по участкам:

,

Сравниваем полученные потери с располагаемым давлением. При этом потери должны составлять ≈0,9Ррасп.


Рраспн+БРе

Ре – естественное давление, возникающее за счет охлаждения воды в нагревательных приборах, Па;

Рн – давление создаваемое насосом.

Б – коэффициент учитывающий работу системы отопления в течение отопительного сезона. Для двухтрубных систем Б=0,5-0,7.

Естественное давление возникающее за счет охлаждения воды в нагревательных приборах

, Па

где h1 – разность высот между центром нагревательного прибора и центром котла, м

- плотности горячей и обратной воды, кг/м3.

По таблице 11 приложения [4] находим при 95оС кг/м3; при 70оС кг/м3;

Для гаража

Па.

Па.

Расчёт местных сопротивлений сводим в таблицу.

Таблица - Расчёт местных сопротивлений

№ участкаХарактер сопротивленияЧисленное значениеИтого по участку
10,5 радиатора0,63,6
Тройник на противоток3
2Отвод на 90о0,31,3
Тройник напрямой проход1
3Отвод на 90о0,31,3
Тройник на прямой проход1
4Тройник на прямой проход11
5Тройник на прямой проход11
6Тройник на прямой проход11
7Тройник на прямой проход11
8Задвижка0,53,5
Крестовина на поворот3
9Четыре отвода под 90о4*0,37,5
10Тройник на проход с поворотом1,53,55
Отвод на 90о 0,3
Задвижка0,5
Полкотла1,25
11Тройник на противоток 35,05
Отвод на 90о0,3
Задвижка0,5
Полкотла1,25
12---
13Задвижка 0,53,5
Крестовина на проход с поворотом3
14Тройник на проход11
15Тройник на проход11
16Тройник на проход11
17 Тройник на проход11
18 Отвод на 90о0,31,3
Тройник на проход1
19Отвод на 90о0,51,5
Тройник на проход1
200,5 радиатора0,6

2,6

Тройник на проход с поворотом1,5
Задвижка0,5
21Тройник на противоток33,6
Полрадиатора0,6
22Тройник на проход с поворотом1,51,5
23Тройник на прямой проход11
24Задвижка0,53,5
Крестовина на проход с поворотом3
25Четыре отвода под 90 о4*0,31,2
26 Тройник на проход с поворотом1,53,55
Отвод под 900,3
Задвижка0,5
Полкотла1,25
27Тройник на противоток35,05
Отвод под 900,3
Задвижка0,5
Полкотла1,25
28 ---
29 Задвижка0,53,5
Крестовина на проход с поворотом3
30Тройник на прямой проход11
31Тройник на проход с поворотом1,51,5
32Тройник на проход с поворотом1,52,6
Задвижка0,5
Полрадиатора0,6

Таблица 3. Гидравлический расчет системы отопления

№ участкаТепловая нагрузка на участок Qуч, ВтРасход теплоно-сителя на участке G, кг/чДлинна участка l, мДиаметр трубы d, ммСкорость воды на участке W, м/сДинами-ческий напор hw, ПаУдельная потеря давления на трение R, ПаПотеря давления на трение Rl, ПаСумма коэффици-ентов местных сопротивлений ΣζПотеря давления на местные сопротив-ления z=Σζ·hw,ПаПолные потери давления Rl+Z,, Па
123456789101112
Большое циркуляционное кольцо
1243283,660,6200,0652,454,002,402,506,138,53
24865167,3611,3320,0491,101,4015,822,502,7518,57
39729334,687,9400,0713,142,4018,962,507,8526,81
414593502,004,8500,0692,451,607,681,002,4510,13
519457669,334,8500,0874,022,4011,521,004,0215,54
624321836,654,8500,1157,064,0019,201,007,0626,26
7291851003,984,8500,14411,086,0028,801,0011,0839,88
8340491171,302,4500,15236,297,0016,801,5054,4471,24
9622152140,2216700,17415,897,00112,007,50119,18231,18
1031107,51070,111,7500,14411,086,0010,202,0022,1632,36
1131107,51070,111,1500,14411,086,006,603,5038,7845,38
12622152140,2211,9700,17415,897,0083,304,0063,56146,86
13340491171,302,4500,15236,297,0016,801,5054,4471,24
14291851003,984,8500,14411,086,0028,801,0011,0839,88
1524321836,654,8500,1157,064,0019,201,007,0626,26
1619457669,334,8500,0874,022,4011,521,004,0215,54
1714593502,004,8500,0692,451,607,681,002,4510,13
189729334,687,9400,0713,142,4018,962,507,8526,81
194865167,367,4320,0491,101,4010,363,003,3013,66
20243283,660,6200,0652,454,002,401,002,454,85
Малое циркуляционное кольцо
1243283,660,6200,0652,454,002,403,68,811,2
24865167,360,6320,0491,101,400,81,51,72,5
3(8)340491171,302,4500,15236,297,0016,801,5054,4471,24
4(9)622152140,2216700,17415,897,00112,007,50119,18231,18
5(10)31107,51070,111,7500,15236,297,0011,901,5054,4466,34
6(11)31107,51070,111,1700,17415,897,007,707,50119,18126,88
7(12)622152140,2211,9500,14411,086,0071,402,0022,1693,56
8(13)340491171,302,4500,14411,086,0014,403,5038,7853,18
94864167,324,5700,17415,897,0031,504,0063,5695,06
10243283,660,6200,0652,454,002,401,503,686,08

Определим невязку в большом и малом циркуляционном кольцах.

%.

Невязка допустима. Для водяного отопления с искусственной циркуляцией в котельной устанавливаются два одинаковых попеременно работающих центробежных насос – рабочий и резервный.


8. Расчет системы вентиляции

В канальных системах естественной вытяжной вентиляции воздух перемещается в каналах и воздуховодах под действием естественного давления, возникающего вследствие разности давлений холодного наружного и теплого внутреннего воздуха.

Естественное давление Δре Па, определяют по формуле

где hi – высота воздушного столба, принимаемая от центра вытяжного отверстия до устья вытяжной шахты, м;

ρн, ρв – плотность соответственно наружного и внутреннего воздуха, кг/м3

Расчетное естественное давление для систем вентиляции жилых и общественных зданий, согласно СНиП П-33-75, определяется для температуры наружного воздуха +5° С. Считается, что при более высоких наружных температурах, когда естественное давление становится весьма незначительным, дополнительный воздухообмен можно получать, открывая более часто и на более продолжительное время форточки, фрамуги, а иногда и створки оконных рам.

Анализируя выражение для естественного давления можно сделать следующие практические выводы.

1. Верхние этажи здания по сравнению с нижними находятся в менее благоприятных условиях, так как располагаемое давление здесь меньше.

2. Естественное давление становится большим при низкой температуре наружного воздуха и заметно уменьшается в теплое время года.

3. Охлаждение воздуха в воздуховодах (каналах) влечет за собой снижение действующего давления и может вызвать выпадение конденсата со всеми вытекающими при этом последствиями

Кроме того, из этого следует, что естественное давление не зависит от длины горизонтальных воздуховодов, тогда как для преодоления сопротивлении в коротких ветвях воздуховодов, безусловно, требуется меньше давления, чем в ветвях значительной протяженности. На основании технико-экономических расчетов и опыта эксплуатации вытяжных систем вентиляции радиус действия их от – оси вытяжной шахты до оси наиболее удаленного отверстия допускается не более 8 м.

Для нормальной работы системы естественной вентиляции необходимо, чтобы было сохранено равенство:

где R – удельная потеря давления на трение, Па/м;

1 – длина воздуховодов (каналов), м;

RI – потеря давления на трение расчетной ветви, Па;

Ζ – потеря давления на местные сопротивления, Па;

Δрс – располагаемое давление, Па;

α – коэффициент запаса, равный 1,1—1,15;

β – поправочный коэффициент на шероховатость поверхности.

Расчету воздуховодов (каналов) должна предшествовать следующая расчетно-графическая работа.

1. Определение воздухообменов для каждого помещения по кратностям (согласно СНиП соответствующего здания) или по расчету. При этой работе заполняется бланк.

2. Компоновка систем вентиляции. В одну систему объединяют только одноименные или близкие по назначению помещения. Системы вентиляции квартир, общежитии и гостиниц не совмещают с системами вентиляции детских садов и яслей, торговых и других учреждений, находящихся в том же здании. Санитарные узлы во всех случаях обслуживаются самостоятельными системами и при пяти унитазах и более оборудуются механическими побудителями. В детских садах и яслях рекомендуется устраивать вытяжные системы естественной вентиляции, самостоятельные для каждой группы детей, объединяя помещения с учетом их на значения (СНиП П-Л.3-71). В курительных комнатах, как правило, осуществляется механическая вентиляция Вытяжку из комнат жилого дома с окнами, выходящими на одну сторону, рекомендуется объединять в одну систему.

3. Графическое изображение на планах этажей и чердака элементов системы (каналов и воздуховодов, вытяжных отверстий и жалюзийных решеток, вытяжных шахт). Против вытяжных отверстий помещений указывается количество воздуха, удаляемого по каналу. Транзитные каналы, обслуживающие помещения нижних этажей, рекомендуется обозначать римскими цифрами (I, II, III и т.д.). Все системы вентиляции должны быть пронумерованы.

4. Вычерчивание аксонометрических схем в линиях, или, что лучше, с изображением внешних очертаний всех элементов системы. На схемах в кружке у выносной черты проставляется номер участка, над чертой указывается нагрузка участка, м3/ч, а под чертой – длина участка, м..

Аэродинамический расчет воздуховодов (каналов) выполняют по таблице или номограммам, составленным для стальных воздуховодов круглого сечения при ρв-1,205 кг/м3, tв=20 °С. В них взаимосвязаны величины L, R, w, hw и d.

Чтобы воспользоваться таблицей или номограммой для расчета воздуховода прямоугольного сечения, необходимо предварительно определить соответствующую величину равновеликого (эквивалентного), диаметра, т.е. такого диаметра круглого воздуховода, при котором для той же скорости движения воздуха, как и в прямоугольном воздуховоде, удельные потери давления на трение были бы равны. Диаметр определяется по; формуле:

где a, b – размеры сторон прямоугольного воздуховода, м.

Если воздуховоды имеют шероховатую поверхность, то коэффициент трения для них а, следовательно, и удельная потеря давления на трение будут соответственно больше, чем указано в таблице или номограмме.

Методика расчета воздуховодов (каналов) систем естественной вентиляции может быть представлена в следующем виде.

1. При заданных объемах воздуха, подлежащего перемещению по каждому участку каналов, принимают скорость его движения.

2. По объему воздуха и принятой скорости определяют предварительно площадь сечения каналов. Потери давления на трение и местные сопротивления для таких сечений каналов выявляют по таблицам или номограммам.

3. Сравнивают полученные суммарные сопротивления с располагаемым давлением. Если эти величины совпадают, то предварительно полученные площади сечения каналов могут быть приняты как окончательные. Если же потери давления оказались меньше или больше располагаемого давления, то площадь сечения каналов следует увеличить или, наоборот, уменьшить, т. е. поступать так же, как при расчете трубопровода системы отопления.

При предварительном определении площади сечений каналов систем естественной вентиляции можно задаваться следующими скоростями движения воздуха: в вертикальных каналах верхнего этажа 0,5÷0,6 м/с, из каждого нижерасположенного этажа на 0,1 м/с больше, чем из предыдущего, но не выше 1 м/с; в сборных воздуховодах w≥l м/с и в вытяжной шахте


w =1÷1,5 м/с.

Если при расчете воздуховодов задана площадь сечения каналов и известен часовой расход воздуха, то скорость w, м/с, определяется по формуле

где f – площадь сечения канала или воздуховода, м2;

L — объем вентиляционного воздуха, м3;

Потери давления на местные сопротивления

,

где Σξ – сумма коэффициентов местных сопротивлений;

hw – динамическое давление, Па

Динамическое давление hw определяется по дополнительной шкале номограммы для расчета воздуховодов.

Запроектируем приставные воздуховоды из гипсошлаковых плит, размещая их снаружи перегородок. Вентилировать будем помещение 104 Курительная.

Расход воздуха по объему помещения при кратности циркуляции равной 10.

м3

Естественное давление в системе вентиляции (при внутренней температуре 14 оС) равно:


Па

Местные потери расписываем по участкам:

Участок №1: Вход в жалюзийную решётку с поворотом потока ξ=2,19;

Вытяжная шахта с зонтом ξ=1,3

Результаты расчёта заносим в таблицу 6.


Таблица 6. Расчёт вентиляции.

№ участкаРасход воздуха L, м3Длинна участка l, мСкорость воздуха на участке w, м/сПлощадь поперечного сечения воздуховода f, м2Размеры воздуховода, мЭквивалентный диаметр dэ, мУдельная потеря давления на трение R, ПаПотеря давления на трение Rl, ПаСумма коэффициентов местных сопротивлений ΣζДинамический напор hw, ПаПотеря давления на местные сопротивления Zуч=Σζ·hw, ПаПолные потери давления на трение ΔP, Па
аb
149,71,30,6140,02250,150,150,150,090,1382,190,2330,5100,648
249,72,80,6140,02250,150,150,150,090,2970,40,2330,0930,391
399,41,00,6900,040,20,20,20,3920,4630,40,2950,1180,581
4132,12,40,6120,060,20,30,240,120,3401,30,2320,3010,641
Итого по участку 1-42,260
532,71,30,4040,02250,150,150,150,090,1382,190,1010,2210,359
632,72,80,4040,02250,150,150,150,090,2970,40,1010,0400,338
749,71,30,6140,02250,150,150,150,090,1382,190,2330,5100,648

Сравним полученные потери на участке 1-4 с располагаемым давлением: 2,26 Па<2,54 Па, следовательно, условие естественной вентиляции PРАСП.>Rl+Z = ΔP выполняется.

На участке 7-3-4: 1,592 Па<2,54 Па;

На участке 5-6-4: 1,338Па<2,54 Па.

Все условия выполняются


9. Используемые источники

1. Справочник по теплоснабжению и вентиляции (издание 4-е, переработанное и дополненное). Книга 1-я. Р.В. Щекин. Киев, "Будiвельник", 1976, стр. 416.

2. Отопление, вентиляция и кондиционирование воздуха. Ч. 1. Теоретические основы создания микроклимата здания: Уч. пос. / Полушкин В.И., Русак О.Н., Бурцев С.И. и др.– СПб: Профессия. 2002. – 176 с., цв.вкл. – (Серия "Специалист").

3. Конспект лекций.

4. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче. Изд. 2-е, перераб. и доп. М., "Энергия", 1969.

5. Справочник по теплоснабжению и вентиляции (издание 4-е, переработанное и дополненное). Книга 2-я. Р.В. Щекин. Киев, "Будiвельник", 1976.

6. Ржаницына Л. М. Расчет систем вентиляции: Методические указания к курсовому и дипломному проектированию. – Архангельск: РИО АЛТИ, 1987. – 20 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно