Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Вычисления по теории вероятностей

Тип Реферат
Предмет Математика
Просмотров
740
Размер файла
136 б
Поделиться

Ознакомительный фрагмент работы:

Вычисления по теории вероятностей

Задача 1. В партии из 60 изделий 10 – бракованных. Определить вероятность того, что среди выбранных наудачу для проверки 5 изделий окажутся бракованными:

а) ровно 2 изделия;

б) не более 2 изделий.

Решение.

А)

Используя классическое определение вероятности:

Р(А) – вероятность события А, где А – событие, когда среди выбранных наудачу изделий для проверки 5 изделий окажутся бракованными ровно 2 изделия;

m – кол-во благоприятных исходов события А;

n – количество всех возможных исходов;

Б)

Р(А’) – вероятность события А’, где А’ – событие, когда среди выбранных наудачу изделий для проверки 5 изделий окажутся бракованными не более 2 изделий,

;

– кол-во благоприятных исходов события ;

– кол-во благоприятных исходов события ;

– кол-во благоприятных исходов события ;

n’ – количество всех возможных исходов;

Ответ: вероятность того, что среди выбранных наудачу для проверки 5 изделий окажутся бракованными: а) ровно 2 изделия равна 16%. б) не более 2 изделий равна 97%.

Задача 2. В сборочный цех завода поступают детали с трех автоматов. Первый автомат дает 1% брака, второй – 2%, третий – 3%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата в цех поступило соответственно 20, 10, 20 деталей.

Решение.

По формуле полной вероятности:


где А – взятие хорошей детали, – взятие детали из первого (второго / третьего) автомата, – вероятность взятия детали из первого (второго / третьего) автомата, – вероятность взятия хорошей детали из первого (второго / третьего) автомата, – вероятность попадания на сборку небракованной детали.

; (т. к. ) = 1% = 0.01)

;

;

Ответ: Вероятность попадания на сборку небракованной детали равна 98%.

Задача 3. В сборочный цех завода поступают детали с трех автоматов. Первый автомат дает 1% брака, второй – 2%, третий – 3%. С каждого автомата поступило на сборку соответственно 20, 10, 20 деталей. Взятая на сборку деталь оказалась бракованной. Найти вероятность того, что деталь поступила с 1-го автомата.

Решение.

По формуле полной вероятности:


где А’ – взятие бракованной детали, – взятие детали из первого (второго / третьего) автомата, – вероятность взятия детали из первого (второго / третьего) автомата, – вероятность взятия бракованной детали из первого (второго / третьего) автомата, – вероятность попадания на сборку бракованной детали.

; (согласно условию)

;

;

Согласно формуле Байеса:

Ответ: Вероятность того, что деталь поступила с 1-го автомата равна 20%.

Задача 4. Рабочий обслуживает 18 станков. Вероятность выхода станка из строя за смену равна . Какова вероятность того, что рабочему придется ремонтировать 5 станков? Каково наивероятнейшее число станков, требующих ремонта за смену?

Решение.

Используя формулу Бернулли, вычислим, какова вероятность того, что рабочему придется ремонтировать 5 станков:

где n – кол-во станков, m – кол-во станков, которые придётся чинить, p – вероятность выхода станка из строя за смену, q =1-р – вероятность, не выхождения станка из строя за смену.

.

Ответ: Вероятность того, что рабочему придется ремонтировать 5 станков равна 15%. Наивероятнейшее число станков, требующих ремонта за смену равно 3.

Задача 5. В двух магазинах, продающих товары одного вида, товарооборот (в тыс. грн.) за 6 месяцев представлен в таблице. Можно ли считать, что товарооборот в первом магазине больше, чем во втором? Принять = 0,05.

Все промежуточные вычисления поместить в таблице.

Магазин №1

Магазин №2

20,35

20,01

20,60

23,55

32,94

25,36

37,56

30,68

40,01

35,34

25,45

23,20

Пусть, a1 – товарооборот в 1 магазине, a2 – товарооборот во 2 магазине.

Формулируем гипотезы Н0 и Н1:

Н0: a1 = a2

Н1: a1 ≠ a2

xi

xi-a1

(xi-a1)2

yi

yi-a2

(yi-a2)2

20,35

-9,135

83,44823

20,01

-6,35

40,32

20,6

-8,885

78,94323

23,55

-2,81

7,896

32,94

3,455

11,93703

25,36

-1

1

37,56

8,075

65,20563

30,68

18,66

40,01

10,525

110,7756

35,34

4,32

80,64

25,45

-4,035

16,28123

23,20

8,98

9,98

176,91

366,591

158,14

-3,16

158,496

a1 = = = 29,485, a2 = =

1 = = 73.32

2 = =

n 1 = n 2 = n =6

Вычислю выборочное значение статистики:

ZВ = * =

Пусть = 0,05. Определяем необходимый квантиль распределения Стьюдента: (n1+n2-2)= 2.228.

Следовательно, так как ZВ=0,74 < =2,228, то мы не станем отвергать гипотезу Н0, потому что это значит, что нет вероятности того, что товарооборот в первом магазине больше, чем во втором.

Задача 6. По данному статистическому ряду:

1. Построить гистограмму частот.

2. Сформулировать гипотезу о виде распределения.

3. Найти оценки параметров распределения.

4. На уровне значимости = 0,05 проверить гипотезу о распределении случайной величины.

Все промежуточные вычисления помещать в соответствующие таблицы.

Интервал

Частота случайной величины

1 – 2

5

2 – 3

8

3 – 4

19

4 – 5

42

5 – 6

68

6 -7

44

7 – 8

21

8 – 9

9

9 – 10

4


1. Гистограмма частот:

2. Предположим, что моя выборка статистического ряда имеет нормальное распределение.

3. Для оценки параметров распределения произведем предварительные расчеты, занесем их в таблицу:

Интервалы

Частота,

mi

Середина

Интервала, xi

xi*mi

xi2*mi

1

1–2

5

4,5

7,5

112,5

2

2–3

8

2,5

20

50

3

3–4

19

3,5

66,5

232,75

4

4–5

42

4,5

189

350,5

5

5–6

68

5,5

374

2057

6

6–7

44

6,5

286

1859

7

7–8

21

7,5

157,5

1181,25

8

8–9

9

8,5

76,5

650,25

9

9–10

4

9,5

38

361

n=220

1215

7354,25

Найдем оценки параметров распределения:


= = 5,523

2= 2 = 2,925 = = 1,71

4. все вычисления для проверки гипотезы о распределении занесем в таблицы.

Интервалы

Частоты, mi

t1

t2

Ф(t1)

Ф(t2)

pi

1

-∞ – 2

5

-∞

-2,06

0

0,0197

0,0197

2

2–3

8

-2,06

-1,47

0,0197

0,0708

0,0511

3

3–4

19

-1,47

-0,89

0,0708

0,1867

0,1159

4

4–5

42

-0,89

-0,31

0,1867

0,3783

0,1916

5

5–6

68

-0,31

0,28

0,3783

0,6103

0,232

6

6–7

44

0,28

0,86

0,6103

0,8051

0,1948

7

7–8

21

0,86

1,45

0,8051

0,9265

0,1214

8

8–9

9

1,45

2,03

0,9265

0,9788

0,0523

9

9-∞

4

2,03

0,9788

1

0,0212

Где: t1= , t2 = , ai, bi – границы интервала, Ф(t) – Функция распределения нормального закона.

pi = Ф(t2) – Ф(t1)

Так как проверка гипотезы о распределении производится по критерию , составляем еще одну таблицу для вычислений:

№ интервала

pi

mi

n* pi

1

2

0,0708

13

15,57

0,4242

3

0,1159

19

25,5

1,6569

4

0,1916

42

42,15

0,0005

5

0,232

68

51,04

5,6336

6

0,1948

44

42,86

0,0303

7

0,1214

21

26,71

1,2207

8

9

0,0735

13

16,17

0,6214

9,5876

Согласно расчетам, = = 9,5876

Выбираем уровень значимости = 0,05 и вычисляем 1-α (k-r-1), где k – число подмножеств, r – число параметров в распределении.

0,95(7–2–1) = 0,95(4) = 9,49.

Сравнив полученное значение с расчетным можно сделать вывод, что так как расчетное значение больше, следовательно, гипотеза о нормальном распределении выборки статистического ряда не принимается.

Задача 7. По данным выборки вычислить:

а) выборочное значение коэффициента корреляции;

б) на уровне значимости = 0,05 проверить гипотезу о значимости коэффициента корреляции.

Решение

Формулируем гипотезы Н0 и Н1:

Н0: a1 = a2

Н1: a1 ≠ a2

xi

xi-a1

(xi-a1)2

yi

yi-a2

(yi-а2)2

xi*yi

4,40

-0,476

0,2266

3,27

-0,47

0,2209

14,388

5,08

0,204

0,0416

4,15

0,41

0,1681

21,082

4,01

-0,866

0,7499

2,95

-0,79

0,6241

11,829

3,61

-1,266

1,6027

1,96

-1,78

3,1684

7,075

6,49

1,614

2,605

5,78

2,04

4,1616

37,512

4,23

-0,646

0,4173

3,06

-0,68

0,4824

12,944

5,79

0,914

0,8354

4,45

0,71

0,5041

25,765

5,52

0,644

0,4147

4,23

0,49

0,2401

23,349

4,68

-0,196

0,0384

3,54

-0,2

0,04

16,567

4,95

0,074

0,0055

4,01

0,27

0,0729

19,849

48,76

-

6,9371

37,4

-

9,6626

190,36


a1 = = 4,876, a2 = = 3,74

1 = = 0,7708

2 = = 1,0736

n 1 = n 2 = n =6

а) Вычислим выборочное значение коэффициента корреляции

=

б) Проверим на уровне значимости =0,05 гипотезу о значимости коэффициента корреляции:

(n-2)=2,306

Вычислим величину

=

получаем, что >0.6319 т.е. попадает в критическую область, следовательно, коэффициент корреляции можно считать значимым.

Задача 8. По данным выборки найти:

а) точечные оценки математического ожидания и дисперсии;

б) с доверительной вероятностью р =1- найти доверительные интервалы для математического ожидания и дисперсии.

α

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

0.01

3,85

8,87

21,26

6,72

0,29

15,48

7,48

0,33

0,34

1,37

Решение

а) Вычислим математическое ожидание и дисперсию. Промежуточные значения поместим в таблицу.

xi

mi

mixi

mixi2

3,85

1

3,85

14,822

8,87

1

8,87

78,677

21,26

1

21,26

451,987

6,72

1

6,72

45,158

0,29

1

0,29

0,0840

15,48

1

15,48

239,630

7,48

1

7,48

55,950

0,33

1

0,33

0,109

0,34

1

0,34

0,115

1,37

1

1,37

1,877

∑65,99

10

65,99

888,409

Математическое ожидание:

m==

Дисперсия:

δ2==

б) с доверительной вероятностью р =1- найти доверительные интервалы для математического ожидания и дисперсии, считая, что выборка получена из нормальной совокупности.

Определим из таблиц значение , где ;

Доверительный интервал для математического ожидания имеет вид:

Подставив полученные значения, найдем доверительный интервал для математического ожидания:

0,271<M<12.927

Доверительный интервал для дисперсии имеет вид:

Доверительный интервал для дисперсии равен: 23,192<D<240,79.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно