Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод Дэвидона-Флетчера-Пауэлла

Тип Реферат
Предмет Информатика и программирование
Просмотров
1599
Размер файла
129 б
Поделиться

Ознакомительный фрагмент работы:

Метод Дэвидона-Флетчера-Пауэлла

Министерство науки, высшей школы и технической

политики Российской Федерации.

Новосибирский Государственный

Технический Университет.

Реферат по исследованию операций на тему

«Метод Дэвидона - Флетчера - Пауэлла».

Вариант №2.

Факультет: АВТ.

Кафедра: АСУ.

Группа: АС-513.

Студент: Бойко Константин Анатольевич.

Преподаватель: Ренин Сергей Васильевич.

Дата: 19 октября 1997 года.

Новосибирск



Введение.

Первоначально метод был предложен Дэвидоном (Davidon [1959] ), а затем развит Флетчером и Пауэллом (Fletcher, Powell [1963] ). Метод Дэвидона - Флетчера - Пауэлла называют также и методом переменной метрики. Он попадает в общий класс квазиньютоновских процедур, в которых направления поиска задаются в виде -Djf(y). Направление градиента является, таким образом, отклоненным в результате умножения на -Dj , где Dj - положительно определенная симметрическая матрица порядка n х n, аппроксимирующая обратную матрицу Гессе. На следующем шаге матрица Dj+1 представляется в виде суммы Dj и двух симметрических матриц ранга один каждая. В связи с этим схема иногда называется схемой коррекции ранга два.

Алгоритм Дэвидона - Флетчера - Пауэлла.

Рассмотрим алгоритм Дэвидона - Флетчера - Пауэлла минимизации дифференцируемой функции нескольких переменных. В частности, если функция квадратичная, то, как будет показано позднее, метод вырабатывает сопряженные направления и останавливается после выполнения одной итерации, т.е. после поиска вдоль каждого из сопряженных направлений.

Начальный этап.

Пусть >0 - константа для остановки. Выбрать точку х1 и начальную симметрическую положительно определенную матрицу D1. Положить y1 = x1, k = j = 1 и перейти к основному этапу.

Основной этап.

Шаг 1. Если çêf(yj) çê< e, то остановиться; в противном случае положить dj = - Djf(yj) и взять в качестве lj оптимальное решение задачи минимизации f(yj + ldj) при l ³ 0. Положить yj+1 = yj + ljdj. Если j < n, то перейти к шагу 2. Если j = n, то положить y1 = xk+1 = yn+1, заменить k на k+1, положить j=1 и повторить шаг 1.

Шаг 2. Построить Dj+1 следующим образом :

, (1)

где

pj = ljdj, (2)

qj = f(yj+1) - f(yj). (3)

Заменить j на j + 1 и перейти к шагу 1.

Пример.

Рассмотрим следующую задачу :

минимизировать (x1 - 2)4 + (x1 - 2x2)2.

Результаты вычислений методом Дэвидона - Флетчера - Пауэлла приведены в таблице 1.

Таблица 1. Результаты вычислений по методу Дэвидона - Флетчера - Пауэлла.

k

xk

f(xk)

j

yj

f(yj)

f(yj)

çêf(yj) çê

D

dj

lj

yj+1

1

(0.00, 3.00)

(52.00)

1

2

(0.00, 3.00)

(52.00)

(2.70, 1.51)

(0.34)

(-44.00, 24.00)

(0.73, 1.28)

50.12

1.47

(44.00, -24.00)

(-0.67, -1.31)

0.062

0.22

(2.70, 1.51)

(2.55, 1.22)

2

(2.55, 1.22)

(0.1036)

1

2

(2.55, 1.22)

(0.1036)

(2.45, 1.27)

(0.0490)

(0.89, -0.44)

(0.18, 0.36)

0.99

0.40

(-0.89, 0.44)

(-0.28, -0.25)

0.11

0.64

(2.45, 1.27)

(2.27, 1.11)

3

(2.27, 1.11)

(0.008)

1

2

(2.27, 1.11)

(0.008)

(2.25, 1.13)

(0.004)

(0.18, -0.20)

(0.04, 0.04)

0.27

0.06

(-0.18, 0.20)

(-0.05, -0.03)

0.10

2.64

(2.25, 1.13)

(2.12, 1.05)

4

(2.12, 1.05)

(0.0005)

1

2

(2.12, 1.05)

(0.0005)

(2.115, 1.058)

(0.0002)

(0.05, -0.08)

(0.004, 0.004)

0.09

0.006

(-0.05, 0.08)

0.10

(2.115, 1.058)

На каждой итерации вектор dj для j = 1, 2 определяется в виде
–Djf(yj), где D1 ­­– единичная матрица, а D2 вычисляется по формулам (1) - (3). При
k = 1 имеем p1 = (2.7, -1.49)T, q1 = (44.73, -22,72)T. На второй итерации
p1 = (-0.1, 0.05)T, q1 = (-0.7, 0.8)T и, наконец, на третьей итерации
p1 = (-0.02, 0.02)T, q1 = (-0.14, 0.24)T. Точка yj+1 вычисляется оптимизацией вдоль направления dj при начальной точке yj для j = 1, 2. Процедура остановлена в точке
y2 = (2.115, 1.058)T на четвертой итерации, так как норма çêf(y2) çê= 0.006 достаточно мала. Траектория движения, полученная методом, показана на рисунке 1.

Рисунок 1. Метод Дэвидона - Флетчера - Пауэлла.

Лемма 1 показывает, что каждая матрица Dj положительно определена и dj является направлением спуска.

Для доказательства леммы нам понадобится :

Теорема 1. Пусть S - непустое множество в Еn, точка x Î cl S. Конусом возможных направлений в точке x называется множество D = {d : d ¹ 0, x + ld Î S при всех l Î (0, d) для некоторого d > 0}.

Определение. Пусть x и y - векторы из Еn и |xTy| - абсолютное значение скалярного произведения xTy. Тогда выполняется следующее неравенство, называемое неравенством Шварца : |xTy| £ ||x|| ||y||.

Лемма 1.

Пусть y1 Î Еn, а D1 – начальная положительно определенная симметрическая матрица. Для j = 1, ..., n положим yj+1 = yj + ljdj, где dj = –Djf(yj), а lj является оптимальным решением задачи минимизации f(yj + ldj) при l ³ 0. Пусть, кроме того, для
j = 1, ..., n – 1 матрица Dj+1 определяется по формулам (1) - (3). Если f(yj) ¹ 0 для
j = 1, ..., n, то матрицы D1, ..., Dn симметрические и положительно определенные, так что d1, ..., dn – направления спуска.

Доказательство.

Проведем доказательство по индукции. При j = 1 матрица D1 симметрическая и положительно определенная по условию леммы. Кроме того,
f(y1)Td1 = –f(y1)TD1f(y1) < 0, так как D1 положительно определена. Тогда по теореме 1 вектор d1 определяет направление спуска. Предположим, что утверждение леммы справедливо для некоторого j £ n – 1, и покажем, что оно справедливо для j+1. Пусть x – ненулевой вектор из En, тогда из (1) имеем

(4)

Так как Dj – симметрическая положительно определенная матрица, то существует положительно определенная матрица Dj1/2, такая, что Dj = Dj1/2Dj1/2. Пусть
a = Dj1/2x и b = Dj1/2qj. Тогда xTDjx = aTa, qjTDjqj = bTb и xTDjqj = aTb. Подставляя эти выражения в (4), получаем :

(5)

По неравенству Шварца имеем (aTa)(bTb) ³ (aTb)2. Таким образом, чтобы доказать, что xTDj+1x ³ 0, достаточно показать, что pjTqj > 0 и bTb > 0. Из (2) и (3) следует, что

pjTqj = ljdjT[f(yj+1) – f(yj)]. (6)

По предположениюf(yj) ¹ 0, и Dj положительно определена, так что
f(yj)TDjf(yj) > 0. Кроме того, dj – направление спуска, и, следовательно, lj > 0. Тогда из (6) следует, что pjTqj > 0. Кроме того, qj ¹ 0, и , следовательно, bTb= qjTDjqj > 0.

Покажем теперь, что xTDj+1x > 0. Предположим, что xTDj+1x = 0. Это возможно только в том случае, если (aTa)(bTb) = (aTb)2 и pjTx = 0. Прежде всего заметим, что
(aTa)(bTb) = (aTb)2 только при a = lb, т.е. Dj1/2x = lDj1/2qj. Таким образом, x = lqj. Так как x ¹ 0, то l ¹ 0. Далее, 0 = pjTx = l pjTqj противоречит тому, что pjTqj > 0 и l ¹ 0. Следовательно, xTDj+1x > 0, т.е. матрица Dj+1 положительно определена.

Поскольку f(yj+1) ¹ 0 и Dj+1 положительно определена, имеем
f(yj+1)Tdj+1 = –f(yj+1)T Dj+1f(yj+1) < 0. Отсюда по теореме 1 следует, что dj+1 – направление спуска.

Лемма доказана.

Квадратичный случай.

В дальнейшем нам понадобиться :

Теорема 2. Пусть f(x) = cTx + 1 xTHx, где Н - симметрическая матрица порядка n x n. Рассмотрим Н - сопряженные векторы d1, …, dn и произвольную точку x1. Пусть lk для k = 1, …, n - оптимальное решение задачи минимизации
f(xk + ldk) при l Î Е1 и xk+1 = xk + ldk. Тогда для k = 1, …, n справедливы следующие утверждения :

1. f(xk+1)Tdj = 0, j = 1, …, k;

2. f(x1)Tdk = f(xk)Tdk;

3. xk+1 является оптимальным решением задачи минимизации f(x) при условии
x - x1 Î L(d1, …, dk), где L(d1, …, dk) – линейное подпространство, натянутое на векторы d1, …, dk, то есть В частности, xn+1 – точка минимума функции f на Еn.

Если целевая функция f квадратичная, то в соответствии со сформулированной ниже теоремой 3 направления d1, …, dn, генерируемые методом Дэвидона - Флетчера - Пауэлла, являются сопряженными. Следовательно, в соответствии с утверждением 3 теоремы 2 метод останавливается после завершения одной итерации в оптимальной точке. Кроме того, матрица Dn+1, полученная в конце итерации, совпадает с обратной к матрице Гессе Н.

Теорема 3. Пусть Н – симметричная положительно определенная матрица порядка n x n. Рассмотрим задачу минимизации f(x) = cTx + 1 xTHx при условии x Î En. Предположим, что задача решена методом Дэвидона - Флетчера - Пауэлла при начальной точке y1 и начальной положительно определенной матрице D1. В частности, пусть lj, j = 1, …, n, – оптимальное решение задачи минимизации f(yj + ldj) при l ³ 0 и yj+1 = yj + ljdj, где dj = -Djf(yj), а Dj определяется по формулам (1) – (3). Если f(yj) ¹ 0 для всех j, то направления
d1, …, dn являются Н - сопряженными и Dn+1 = H-1. Кроме того, yn+1 является оптимальным решением задачи.

Доказательство.

Прежде всего покажем, что для j, такого, что 1 £ j £ n, справедливы следующие утверждения :

1. d1, …, dj линейно независимы.

2. djTHdk = 0 для i ¹ k; i, k £ j.

3. Dj+1Hpk, или, что эквивалентно, Dj+1Hdk = dk для 1 £ k £ j, pk = lkdk.

Проведем доказательство по индукции. Для j = 1 утверждения 1 и 2 очевидны. Чтобы доказать утверждение 3, заметим прежде всего, что для любого k справедливы равенства

Hpk = H(lkdk) = H(yk+1 - yk) = f(yk+1) –f(yk) = qk. (7)

В частности, Hp1 = q1. Таким образом, полагая j = 1 в (1), получаем

,

т.е. утверждение 3 справедливо при j = 1.

Теперь предположим, что утверждения 1, 2 и 3 справедливы для j £ n – 1. Покажем, что они также справедливы и для j + 1. Напомним, что по утверждению 1 теоремы 2 diTf(yj+1) = 0 для i £ j. По индуктивному предположению di = Dj+1Hdi, i £ j. Таким образом, для i £ j имеем

0 = diTf(yj+1) = diTHDj+1f(yj+1) = –diTHdj+1.

Ввиду предположения индукции это равенство показывает, что утверждение 2 также справедливо для j+1.

Теперь покажем, что утверждение 3 справедливо для j+1.

Полагая k £ j+1, имеем

. (8)

Учитывая (7) и полагая k = j + 1 в (8), получим, что Dj+2Hpj+1 = pj+1. Теперь пусть k £ j. Так как утверждение 2 справедливо для j + 1, то

pj+1THpk = lklj+1dj+1THdk = 0. (9)

По предположению индукции из (7) и вследствие того, что утверждение 2 справедливо для j + 1, получаем

. (10)

Подставляя (9) и (10) в (8) и учитывая предположение индукции, получаем

.

Таким образом, утверждение 3 справедливо для j+1.

Осталось показать, что утверждение 1 справедливо для j+1. Предположим, что . Умножая это равенство на и учитывая, что утверждение 2 справедливо для j+1, получаем, что . По условию теоремы , а по лемме 1 матрица положительно определена, так что . Так как H положительно определена, то и, следовательно, . Отсюда следует, что , и так как d1, …, dj линейно независимы по предположению индукции, то для i = 1, …, j. Таким образом, d1, …, dj+1 линейно независимы и утверждение 1 справедливо для j+1. Следовательно, утверждения 1, 2 и 3 выполняются. В частности сопряжённость d1, …, dn следует из утверждений 1 и 2, если положить j = n.

Пусть теперь j = n в утверждении 3. Тогда для k = 1, …, n. Если в качестве D взять матрицу, столбцами которой являются векторы d1, …, dn, то . Так как D имеет обратную, то , что возможно только в том случае, если . Наконец, является оптимальным решением по теореме 2.

Теорема доказана.


Список литературы.

1. Базара М., Шетти К. «Нелинейное программирование. Теория и алгоритмы». М., 1982.

2. Химмельблау Д. «Прикладное нелинейное программирование». М., 1975.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно