Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основная теорема алгебры

Тип Реферат
Предмет Математика
Просмотров
428
Размер файла
67 б
Поделиться

Ознакомительный фрагмент работы:

Основная теорема алгебры

Всякий многочлен с любыми комплексными коэффициентами , степень которого не меньше единицы имеет хотя бы один корень, в общем случае комплексный.

План доказательства.

Лемма №1. Многочлен f(x) является непрерывной функцией комплексного переменного x.

Лемма №2. Если данн многочлен n-ой степени, n>0,

f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если k- любое положительное действительное число, то для достаточно больших по модулю значений

|anxn|>k|axn-1+anxn-2+….+a0|

Лемма №3.

Лемма №4.(Лемма Даламбера).

Лемма №5.

Если действительная функция комплексного переменного f(x)непрерывна в замкнутом круге Е, то она ограничена.

Лемма №6.

Действительная функция комплексного переменного f(x)непрерывная в замкнутом круге Е достигает своего минимума и максимума.

Доказательство основной теоремы.

Лемма №1.

Надо доказать, что |f(x0+x)-f(x0)|<e.

Докажем Лемму №1 сначала для многочлена без свободного члена и при x0=0

Если A=max(|a0 |,|a1|,…,|a n-1|) и (1)

то |f(x)|=|a0xn+…+an-1x|


,

т.к |x|<б ,и из (1) б<1, то

т.к. a0=0 то f(0)=0

Что и требовалось доказать.

Теперь докажем непрерывность любого многочлена.

f(x0+x)=a0(x0+x)n+…+an

pаскрывая все скобки по формуле бинома и собирая вместе члены с

одинаковыми степенями x получим


Многочлен g(x)-это многочлен от x при x0 =0 и а0=0 |f(x0+x)-f(x)|=|g(x)|<e

Лемма доказана.

Лемма №2

Если дан многочлен n-ой степени, n>0,

f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если k- любое положительное действительное число, то для достаточно больших по модулю значений x верно неравенство:

|a0xn|>k|a1xn-1+a2xn-2+….+an| (2)

Доказательсво.

Пусть А=max(), тогда

пологая |x|>1, получим

откуда

следовательно неравенство (2) будет выполняться если |x|>1 и

Лемма №2 доказана.

Лемма №3.

Доказательство.

(3)

применим лемму 2: при k=2 существует такое N1 , что при |x|> N1

|a0xn|>2|a1xn-1+a2xn-2+….+an|

откуда

|a1xn-1+a2xn-2+….+an|<|a0xn|/2

тогда из (3)

при |x|>N=max(N1,N2) |f(x)|>M что и тебовалось доказать.

Лемма №3(Лемма Даламбера).

Если при x=x0многочлен f(x)степени n,не обращаеться в нуль, то существует такое приращение h, в общем случае комплексное, что

|f(x0+h)|<|f(x)|

Доказательство.


По условию f(x0) не равно нулю, случайно может быть так, что x0 является корнем f’(x),..,f(k-1)(x). Пусть k-я производная будет первой, не имеющей x0 своим корнем. Такое k существует т.к.

f(n)( x0)=n!a0

Таким образом


Т.к f(x0) не равно нулю то поделим обе части уравнения на f(x0)

и обозначим

Теперь будем выбирать h. Причем будем отдельно выбирать его модуль и его аргумент.

По лемме№1:

С другой стороны при

(4)

Пусть |h|<min(б1, б2), тогда

Теперь выберем аргумент h так, чтобы ckhkбыло действительным отрицательным числом.

При таком выборе ckhk=-| ckhk| следовательно учитывая (4) получим

Что доказывает лемму Даламбера.

Лемма №5.

Если действительная функция комплексного переменного f(x)непрерывна в замкнутом круге Е, то она ограничена.

Доказательство.

Предположим, что это не верно тогда

получена бесконечная ограниченная последовательность xn,

из нее можно выбрать сходящуюся подпоследовательность , пусть ее предел равенx0. Так как круг Е замкнут, то x0 пренадлежит Е. Тогда так как f(x)непрерывна

получено противоречие, следовательно неверно, предположение о неограничености f(x).

Лемма №6.

Действительная функция комплексного переменногоf(x)непрерывная в замкнутом круге Е достигает своего минимума и

максимума.

Доказательство.

Докажем это утверждение для максимума.

Так как f(x)непрерывна в Е, то она ограничена и следовательно существует M=sup{ f(x)}. Рассмотрим функцию .

Если f(x) не достигает своего максимума, то M> f(x) следовательно M-f(x)>0 , следовательно g(x)непрерывна в Е.

Полученое противоречит тому, что M=sup{ f(x)}. Следовательно функция достигает свего максимума. Аналогично доказывается достижение минимума.

Доказательство основной теоремы.

Пусть дан многочлен f(x), очевидно что если an-свободный член, то f(0)= an. Теперь применим лемму№3: возьмем М=|f(0)| =|an| тогда существует такое N, что при |x|>N |f(x)|>M. Теперь возьмем круг Е ограниченный окружностью с центром в нуле и радиусом N, включая границы круга. Так как (по лемме №1) многочлен f(x)-непрерывен, то и |f(x)|-непрерывен внутри замкнутого круга Е, следовательно(по лемме №6), существует такая точка x0, что для всех x из E выполняется неравенство |f(x)|>=|f(x0)|. x0 является точкой минимума для |f(x)| внутри E. Т.к для любого x:|x|>N |f(x)|>M>|f(0)|>|f(x0)| точка x0 является точкой минимуа |f(x)| на всей комплексной плоскости.

|f(x0)|=0 т.к по лемме Даламбера если |f(x0)|¹0 то x0 не точка минимума для |f(x)|Þ x0-корень многочлена f(x).

Теорема доказана.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156804
рейтинг
icon
6076
работ сдано
icon
2739
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
65 048 оценок star star star star star
среднее 4.9 из 5
Институт экономики и Культуры
Отличная работа!Отличный исполнитель,всем рекомендую.Все четко и по делу.Просто суппер))))
star star star star star
РУДН
Работа выполнена на высшем уровне. Все примечания соблюдены. Исполнитель активный и общите...
star star star star star
ИРНИТУ
Исполнитель понравился, сделано все блестяще даже больше! Рекомендую!!!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Создать презентацию и доклад

Презентация, Дипломная работа

Срок сдачи к 24 февр.

1 минуту назад

Тест дистанционно по математике мти

Тест дистанционно, Математика

Срок сдачи к 21 февр.

3 минуты назад

Написать отчет по практике

Отчет по практике, общая

Срок сдачи к 5 мар.

3 минуты назад

Решить задачи, ссылаясь на законы

Решение задач, Государственная и муниципальная служба

Срок сдачи к 16 мар.

4 минуты назад
6 минут назад

Описание практики применения геймификации для работы с персоналом в...

Презентация, Основы геймификации в управлении персоналом

Срок сдачи к 23 февр.

6 минут назад

Решить 8 заданий

Решение задач, Оценка эффективности рекламной и паблик рилейшнз деятельности

Срок сдачи к 22 февр.

7 минут назад

Производственная практика | ПМ.04 |

Отчет по практике, Бухгалтерский учет

Срок сдачи к 22 февр.

7 минут назад

Курсовая на тему : Договор энергоснабжения

Курсовая, Гражданское право

Срок сдачи к 27 февр.

10 минут назад

Решить задачи по гидрогеологии

Контрольная, Гидрогеология

Срок сдачи к 27 февр.

11 минут назад

Ответ на задания и задачи для гос. экзамена

Ответы на билеты, Ветеринарно-санитарная экспертиза

Срок сдачи к 8 мар.

11 минут назад

Комплексные числа

Контрольная, Высшая математика

Срок сдачи к 21 февр.

11 минут назад

Решение задачи по электротехнике 3,7,11 вар 7

Решение задач, Электротехника

Срок сдачи к 28 февр.

11 минут назад

Научно исследовательская работа

Отчет по практике, Экономика и управление финансами

Срок сдачи к 6 мар.

11 минут назад

Реферат

Реферат, Теория и практика квалификации отдельных видов преступлений

Срок сдачи к 27 февр.

11 минут назад

Нужно выполнить контрольную работу

Контрольная, Общее языкознание

Срок сдачи к 27 февр.

11 минут назад

Тест по Английскому языку мти

Тест дистанционно, Английский язык

Срок сдачи к 21 февр.

11 минут назад

The usage of past tenses in the film trilogy «back to the future»

Курсовая, Английский язык

Срок сдачи к 22 февр.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно