Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основная теорема алгебры

Тип Реферат
Предмет Математика
Просмотров
418
Размер файла
67 б
Поделиться

Ознакомительный фрагмент работы:

Основная теорема алгебры

Всякий многочлен с любыми комплексными коэффициентами , степень которого не меньше единицы имеет хотя бы один корень, в общем случае комплексный.

План доказательства.

Лемма №1. Многочлен f(x) является непрерывной функцией комплексного переменного x.

Лемма №2. Если данн многочлен n-ой степени, n>0,

f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если k- любое положительное действительное число, то для достаточно больших по модулю значений

|anxn|>k|axn-1+anxn-2+….+a0|

Лемма №3.

Лемма №4.(Лемма Даламбера).

Лемма №5.

Если действительная функция комплексного переменного f(x)непрерывна в замкнутом круге Е, то она ограничена.

Лемма №6.

Действительная функция комплексного переменного f(x)непрерывная в замкнутом круге Е достигает своего минимума и максимума.

Доказательство основной теоремы.

Лемма №1.

Надо доказать, что |f(x0+x)-f(x0)|<e.

Докажем Лемму №1 сначала для многочлена без свободного члена и при x0=0

Если A=max(|a0 |,|a1|,…,|a n-1|) и (1)

то |f(x)|=|a0xn+…+an-1x|


,

т.к |x|<б ,и из (1) б<1, то

т.к. a0=0 то f(0)=0

Что и требовалось доказать.

Теперь докажем непрерывность любого многочлена.

f(x0+x)=a0(x0+x)n+…+an

pаскрывая все скобки по формуле бинома и собирая вместе члены с

одинаковыми степенями x получим


Многочлен g(x)-это многочлен от x при x0 =0 и а0=0 |f(x0+x)-f(x)|=|g(x)|<e

Лемма доказана.

Лемма №2

Если дан многочлен n-ой степени, n>0,

f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если k- любое положительное действительное число, то для достаточно больших по модулю значений x верно неравенство:

|a0xn|>k|a1xn-1+a2xn-2+….+an| (2)

Доказательсво.

Пусть А=max(), тогда

пологая |x|>1, получим

откуда

следовательно неравенство (2) будет выполняться если |x|>1 и

Лемма №2 доказана.

Лемма №3.

Доказательство.

(3)

применим лемму 2: при k=2 существует такое N1 , что при |x|> N1

|a0xn|>2|a1xn-1+a2xn-2+….+an|

откуда

|a1xn-1+a2xn-2+….+an|<|a0xn|/2

тогда из (3)

при |x|>N=max(N1,N2) |f(x)|>M что и тебовалось доказать.

Лемма №3(Лемма Даламбера).

Если при x=x0многочлен f(x)степени n,не обращаеться в нуль, то существует такое приращение h, в общем случае комплексное, что

|f(x0+h)|<|f(x)|

Доказательство.


По условию f(x0) не равно нулю, случайно может быть так, что x0 является корнем f’(x),..,f(k-1)(x). Пусть k-я производная будет первой, не имеющей x0 своим корнем. Такое k существует т.к.

f(n)( x0)=n!a0

Таким образом


Т.к f(x0) не равно нулю то поделим обе части уравнения на f(x0)

и обозначим

Теперь будем выбирать h. Причем будем отдельно выбирать его модуль и его аргумент.

По лемме№1:

С другой стороны при

(4)

Пусть |h|<min(б1, б2), тогда

Теперь выберем аргумент h так, чтобы ckhkбыло действительным отрицательным числом.

При таком выборе ckhk=-| ckhk| следовательно учитывая (4) получим

Что доказывает лемму Даламбера.

Лемма №5.

Если действительная функция комплексного переменного f(x)непрерывна в замкнутом круге Е, то она ограничена.

Доказательство.

Предположим, что это не верно тогда

получена бесконечная ограниченная последовательность xn,

из нее можно выбрать сходящуюся подпоследовательность , пусть ее предел равенx0. Так как круг Е замкнут, то x0 пренадлежит Е. Тогда так как f(x)непрерывна

получено противоречие, следовательно неверно, предположение о неограничености f(x).

Лемма №6.

Действительная функция комплексного переменногоf(x)непрерывная в замкнутом круге Е достигает своего минимума и

максимума.

Доказательство.

Докажем это утверждение для максимума.

Так как f(x)непрерывна в Е, то она ограничена и следовательно существует M=sup{ f(x)}. Рассмотрим функцию .

Если f(x) не достигает своего максимума, то M> f(x) следовательно M-f(x)>0 , следовательно g(x)непрерывна в Е.

Полученое противоречит тому, что M=sup{ f(x)}. Следовательно функция достигает свего максимума. Аналогично доказывается достижение минимума.

Доказательство основной теоремы.

Пусть дан многочлен f(x), очевидно что если an-свободный член, то f(0)= an. Теперь применим лемму№3: возьмем М=|f(0)| =|an| тогда существует такое N, что при |x|>N |f(x)|>M. Теперь возьмем круг Е ограниченный окружностью с центром в нуле и радиусом N, включая границы круга. Так как (по лемме №1) многочлен f(x)-непрерывен, то и |f(x)|-непрерывен внутри замкнутого круга Е, следовательно(по лемме №6), существует такая точка x0, что для всех x из E выполняется неравенство |f(x)|>=|f(x0)|. x0 является точкой минимума для |f(x)| внутри E. Т.к для любого x:|x|>N |f(x)|>M>|f(0)|>|f(x0)| точка x0 является точкой минимуа |f(x)| на всей комплексной плоскости.

|f(x0)|=0 т.к по лемме Даламбера если |f(x0)|¹0 то x0 не точка минимума для |f(x)|Þ x0-корень многочлена f(x).

Теорема доказана.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 117 оценок star star star star star
среднее 4.9 из 5
Уральский Государственный аграрный университет
Заказ сделала очень быстро и на мой взгляд очень качественно согласно методичке. Преподава...
star star star star star
Витте
Честно указывает, как будет выглядеть итоговая работа. В связи с этим хорошая цена и качес...
star star star star star
РГПУ им.Герцена
Отличная работа ! Большое спасибо. Выполнено быстро, раньше срока. Очень довольна, буду о...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Служебная дисциплина в органах внутренних дел.

Контрольная, Административная деятельность полиции

Срок сдачи к 31 дек.

1 минуту назад

Вариант 6

Контрольная, Предварительное следствие в ОВД

Срок сдачи к 31 дек.

4 минуты назад

Нужно пройти контрольные тестирования по предметам

Тест дистанционно, Административное право, Безопасность жизнедеятельности, Гос. и муниципальные финансы

Срок сдачи к 28 дек.

7 минут назад
9 минут назад

Сделать 6 несложных лабораторных в sql

Лабораторная, Информационные системы в экономике

Срок сдачи к 27 дек.

11 минут назад

Урок французского языка

Онлайн-помощь, Французский язык

Срок сдачи к 26 дек.

11 минут назад

Решить задачу неканонического вида симплекс методом

Решение задач, Высшая математика

Срок сдачи к 26 дек.

11 минут назад

доклад + презентация

Доклад, система государственного и муниципального управления

Срок сдачи к 26 дек.

11 минут назад

практическая работа

Другое, Теоретическая механика

Срок сдачи к 29 дек.

11 минут назад

Написать текст для рекламной компании фотографа , подробнее ниже

Отчет по практике, Реклама и PR

Срок сдачи к 26 дек.

11 минут назад

Расчет тягово-экономических свойств автомобиля.

Курсовая, Автомобильная промышленность

Срок сдачи к 29 дек.

11 минут назад

Сделать качественный анализ swot анализа

Другое, Сестринское дело

Срок сдачи к 28 дек.

11 минут назад

Пресс-релиз для фотографа

Отчет по практике, Реклама и PR

Срок сдачи к 26 дек.

11 минут назад

текст для рекламной кампании фотографа,

Отчет по практике, Реклама и PR

Срок сдачи к 26 дек.

11 минут назад

сделать презентацию по заданию, уровнь 2...

Презентация, информационные технологии

Срок сдачи к 26 дек.

11 минут назад

табличка в Exel начальный уровень

Другое, информационные технологии

Срок сдачи к 26 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно