Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Автоматизированный априорный анализ статистической совокупности в среде MS Excel 3

Тип Реферат
Предмет Информатика
Просмотров
847
Размер файла
115 б
Поделиться

Ознакомительный фрагмент работы:

Автоматизированный априорный анализ статистической совокупности в среде MS Excel 3


ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы №1

«Автоматизированный априорный анализ статистической совокупности в среде MSExcel»

Вариант № 19

Выполнил: ст. III курса гр. БУА и А

Завьялова А.А.

Проверил: Корецкий Г.А.

Владимир 2010


Постановка задачи

При проведении статистического наблюдения за деятельностью предприятий одной из отраслей промышленности получены выборочные данные по 32-м предприятиям (выборка 10%-ная, механическая) о среднегодовой стоимости основных производственных фондов и выпуске продукции за год.

В проводимом статистическом исследовании обследованные предприятия выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции — как изучаемые признаки единиц.

Выборочные данные представлены в формате электронных таблиц процессора Excelв диапазоне ячеек В4:С35 (табл.1). Таблица 1

Номер предприятияСреднегодовая стоимость основных производственных фондов, млн.руб.Выпуск продукции, млн. руб.
11124,001081,50
21323,501186,50
31365,501323,00
41439,001470,00
5935,00735,00
61512,501260,00
71554,501701,00
81166,001155,00
91428,501354,50
101649,001690,50
111806,501785,00
131376,001407,00
141512,501533,00
151733,001858,50
161985,001995,00
171481,001344,00
181638,501596,00
191302,50997,50
201659,501365,00
211848,501837,50
221271,001039,50
231008,50976,50
241691,001564,50
251512,501365,00
261407,501291,50
271092,50840,00
281470,501312,50
291701,501438,50
301617,501365,00
321187,001218,00

В процессе исследования совокупности необходимо решить ряд статистических задач для выборочной и генеральной совокупности.

I.Статистический анализ выборочной совокупности

1. Выявить наличие среди исходных данных резко выделяющихся значений признаков («выбросов» данных) с целью исключения из выборки аномальных единиц наблюдения.

2. Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую (), моду (Мо), медиану (Me), размах вариации (R), дисперсию (σ2n), средние отклонения - линейное () и квадратическое (σn), коэффициент вариации (), структурный коэффициент асимметрии К.Пирсона (Asn).

3. На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:

а) степень колеблемости значений признаков в совокупности;

б) степень однородности совокупности по изучаемым признакам;

в) устойчивость индивидуальных значений признаков;

г) количество попаданий индивидуальных значений признаков в диапазоны:

( ±σ), ( ±2σ), ( ± Зσ).

4. Дать сравнительную характеристику распределений единиц совокупности по двум изучаемым признакам, на основе анализа:

а) вариации признаков (исходя из оценок показателей R, , σn, );

б) количественной однородности единиц;

в) надежности (типичности) средних значений признаков;

г) симметричности распределений в центральной части ряда.

5. Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения. Рассчитать моду Mо полученного интервального ряда и сравнить ее с показателем Mо несгруппированного ряда данных.

II. Статистический анализ генеральной совокупности

1. Рассчитать генеральную дисперсию (σ2n), генеральное среднее квадратическое отклонение (σn) и ожидаемый размах вариации признаков. Сопоставить значения этих

показателей для генеральной и выборочной дисперсий.

2. Для изучаемых признаков рассчитать:

а) среднюю ошибку выборки;

б) предельные ошибки выборки для уровней надежности Р=0,683, Р=0,954 и Р=0,997 и границы, в которых будут находиться средние значения признака генеральной совокупности при заданных уровнях надежности..Сделать вывод о целесообразности использования уровня надежности Р=0,997.

3. Рассчитать коэффициенты асимметрии As и эксцесса Ек. На основе полученных оценок сделать вывод о степени близости распределения единиц генеральной совокупности к нормальному распределению.

III. Экономическая интерпретация результатов статистического исследования предприятий

В этой части исследования необходимо ответить на ряд вопросов.

1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?

2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов и выпуска продукции?

3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?

4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?

5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?

6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?

I.Статистический анализ выборочной совокупности

Задача 1

В результате визуального анализа диаграммы рассеяния признаков единиц наблюдаемой совокупности выявлены двеаномальные единицы наблюдения, номера предприятий 12,31 (Табл. 2)

Таблица 2
Аномальные единицы наблюдения
Номер предприятияСреднегодовая стоимость основных производственных фондов, млн.руб.Выпуск продукции, млн. руб.
12620,001575,00
311985,00525,00

Приведенные в таблице аномальные единицы наблюдения удалены из изучаемой совокупности.

Задача 2

Выборочные показатели в результате расчетов представлены в двух таблицах — таблица 3 и таблица 5. На основе этих таблиц сформирована единая Таблица 8

«Описательные статистики выборочной совокупности»

Таблица 8
Наименование показателяСреднегодовая стоимость основных производственных фондов, млн.руб.""Выпуск продукции, млн. руб. "

Среднее

1460

1369,55

МедианаМе1475,75

1359,75

МодаMо1512.5

1365

Размах вариации,R10501260
Минимум935

735

Максимум1985

1995

Уровень надежности(95,4%)

96,669

115,318

Стандартное отклонение

253,969

302,963

Дисперсия

62350,05

88726,87

Среднее линейное отклонение

200,9

229,46
Коэффициент вариации, %

17,103

21,749
Коэффициент асимметрииAsn

-0,210

0,015

Задача 3

а) степень колеблемости значений признаков в совокупности;

0%<Vs40% - колеблемость незначительная;

40%< Vs60% - колеблемость средняя (умеренная);

Vs>60% - колеблемость значительная.

После удаления аномальных значений коэффициент вариации признака «Среднегодовая стоимость основных производственных фондов» составляет 17,103%, исходя из оценочной шкалы находится в диапазоне 0%<<40% ,что свидетельствует о незначительной степени колеблемости признака.

Коэффициент вариации признака «Выпуск продукции» составляет 21,749%, исходя из оценочной шкалы находится в диапазоне 0%<<40%,что свидетельствует о незначительной степени колеблемости признака.

б) степень однородности по изучаемым признакам;

Однородность совокупностидля нормального и близких к нормальному распределений устанавливается по условию ≤ 33 %..

Коэффициент вариации признака «Среднегодовая стоимость основных производственных фондов» составляет 17,103 %,что свидетельствует об однородности изучаемой совокупности.

Коэффициент вариации признака «Выпуск продукции» составляет 21,749 %, что свидетельствует об однородности изучаемой совокупности. Чем однороднее изучаемая совокупность, тем надежнее полученная средняя.

в) устойчивость индивидуальных значений признаков;

Сопоставление средних отклонений – квадратического σ и линейного позволяет сделать вывод об устойчивости индивидуальных значений признака, т.е. об отсутствии среди них «аномальных» вариантов значений.

Расчет устойчивости данных

По столбцу «Среднегодовая стоимость основных производственных фондов, млн. руб.»По столбцу «Выпуск продукции млн. рублей.
0,79 0,76

В условиях симметричного и нормального, а также близких к ним распределений между показателем σ и имеют место равенства – σ ≈ l,25,или ≈ 0,8σ, поэтому отношение показателей и σможет служить индикатором устойчивости данных:если/ σ (0,79столбец 1, 0,76 столбец 2) <0,8,значения признака устойчивы, в них не имеется «аномальных» выбросов.

г) количество попаданий индивидуальных значений признаков в диапазоны:

( ±σ), ( ±2σ), ( ± Зσ) (Таблица 9).

Таблица 9

Распределение значений признака по диапазонамрассеяния признака

ПризнакиГграницы интервалов вариации признакаКоличество значений признака х;, находящихся в диапазоне
-σn<Хi<+ σn-2σn<Хi<+2σn-3σn<Хi<+ n
Первый признак
Второй признак

По значениям показателей и σ можно определить границы интервалов вариации признака, т.е. установить, какая доля единиц совокупности попадает в тот или иной интервал отклонений значений признака от .

Согласно вероятностной теореме П.Л.Чебышева следует ожидать, что независимо от формы распределения 75% значений признака будут находиться в интервале ±2σ, а 89% значений - в интервале ±3σ .

В нормально распределенных и близких к ним рядах вероятностные оценки границ интервалов таковы:

68,3% значений признака войдет в интервал ± σ,

95,4% значений признака попадет в интервал ±2σ,(1)

99,7% значений признака появится в интервале ± Зσ.

Соотношение (1) известно, как правило «трех сигм».

Для выборочной совокупности значения и σ прассчитаны и являютсяточными, поэтому, основываясь на правиле «трех сигм», можно точно оценить границы всех трех вероятностных интервалов отклонений значений признака от средней.

Ожидаемые границы вариации выборки для признака «Среднегодовая стоимость основных производственных фондов» соответствуют:

±σ с вероятностью Р=68,3%, т. е. ±253,969;

±2σ с вероятностью Р=95,4%, т. е. ±507,938;

±3σ с вероятностью Р=99,7%, т. е. ±761,907.

Ожидаемые границы вариации выборки для признака «Выпуск продукции»соответствуют:

±σ с вероятностью Р=68,3%, т. е. ±302,963;

±2σ с вероятностью Р=95,4%, т. е. ±605,926;

±3σ с вероятностью Р=99,7%, т. е. ±908,889.

Для генеральной совокупности точно известна только величина σN, aвеличина рассчитывается, поэтому прогнозные оценки попадания значений признака в тот или иной интервал является прогнозным и обычно задается в форме (1) с учетом известного значения σN.

Ожидаемые границы вариации генеральной совокупности для признака «Среднегодовая стоимость основных производственных фондов» соответствуют:

±σ с вероятностью Р=68,3%, т. е. ±253,969;

±2σ с вероятностью Р=95,4%, т. е. ±507,938;

±3σ с вероятностью Р=99,7%, т. е. ±761,907.

Ожидаемые границы вариации генеральной совокупности для признака «Выпуск продукции» соответствуют:

±σ с вероятностью Р=68,3%, т. е. ±302,963;

±2σ с вероятностью Р=95,4%, т. е. ±605,926;

±3σ с вероятностью Р=99,7%, т. е. ±908,889.

Учитывая правило «трех сигм», в статистической практике величину Зσ считают в условиях нормального и близких к нему распределений максимально допустимой ошибкой наблюдения и отбрасывают результаты наблюдений для которых

i-х| > 3σ(2)

Для нормального распределения справедливо равенство

R=6σ(3)

Задача 4

Важная функция обобщающих показателей вариации , σ2, σ, - оценка надежности (типичности) средней величины.

Для «Среднегодовая стоимость основных производственных фондов» значения показателей = 200,9 , σ2 = 62350,05 , σ = 253,969 , = 17,103 невелики, индивидуальные значения признака ряда мало отличаются друг от друга, единицы наблюдения количественно однородны и, следовательно, среднее арифметическая величина является надежной характеристикой данной совокупности.

Для «Выпуск продукции» значения показателей = 229,46 , σ2 = 88726,87, σ=302,963 , = 21,749 невелики, индивидуальные значения признака ряда мало отличаются друг от друга, единицы наблюдения количественно однородны и, следовательно, среднее арифметическая величина является надежной характеристикой данной совокупности.

Задача 5

Возможность отнесения кривой распределения эмпирических данных к типу кривых нормального распределения устанавливается путем анализа формы гистограммы вариационного ряда распределения с учетом оценок показателей особенностей формы распределения (рис.2).

При анализе формы гистограммы прежде всего следует оценить распределение вариантов значений признака по интервалам (группам).Гистограмма имеет одновершинную форму, поэтому можно считать выборку однородной по данному признаку.

Установив однородность совокупности, для дальнейшего анализа формы распределения используются описательные параметры выборки. Анализируются параметры и σп, выступающие в качестве статистических оценок соответствующих параметров нормального распределения - математического ожидания М[] и стандартного отклонения σnгенеральной совокупности.

Распределение приблизительно симметрично, так как параметры , Mo, Me отличаются незначительно:

= 1460 Mo= 1512,5 Me= 1475,75

Графический анализ показывает, что гистограмма приблизительно симметрична, ее «хвосты» не очень длинны, что позволяет судить о близости эмпирического распределения нормальному закону распределения.

Результаты визуального анализа не противоречат значениям полученных коэффициентов эксцесса и асимметрии, которые приведены в таблице:

КоэффициентЗначение коэффициентаАнализ значения коэффициента
Эксцесса

-0,345

Распределение пологое
Асимметрии

-0,153

Асимметрия низкая

Следовательно, можно сделать заключение о близости изучаемого распределения к нормальному.

II. Статистический анализ генеральной совокупности

Задача 1

Генеральные показатели , , As, Ekрассчитаны с помощью инструмента Описательная статистика и их значение представлены в табл.3. Для этих показателей сформирована отдельная таблица 10.

Таблица 10

«Описательные статистики генеральной совокупности».

Наименование показателяСреднегодовая стоимость основных производственных фондов, млн.руб.""Выпуск продукции, млн. руб."
Асимметричность-0.153

0,043

Эксцесс-0.345-0.205
Дисперсия выборки

64500,052

91786,420

Стандартное отклонениеσn

253,969

302,963

Дисперсия

σ2n

62350,05

88726,873

Коэффициент асимметрииAsn

-0,210

0,015

Установить степень расхождения между σ2n и , можно по формуле:

= σ2n

Для «Среднегодовой стоимости основных производственных фондов»

64500,052 =(30/29)* 62350,05

64500,052=64500,052

Для «Выпуск продукции» значения показателей

91786,420= (30/29)* 88726,873

91786,420=91786,420

Равенство выполняется.

Ожидаемый размах вариации признаков RN:

- для первого признака RN=1050,

- для второго признака RN =1260

Соотношениемежду генеральной и выборочной дисперсиями:

- для первого признака 1,03 т.е. расхождение между дисперсиями незначительное;

ля второго признака 1,03 т.е. расхождение между дисперсиями незначительное.

Задача 2

Значения предельных ошибок выборки имеются в табл.3, табл.4а и табл.4б. На основе этих данных сформирована таблица 11.

Таблица 11

Предельные ошибки выборки и ожидаемые границы для генеральных средних

Доверительная

вероятность Р

Коэффициент

доверия t

Предельные ошибки выборкиОжидаемые границы для средних
Для первого признакаДля второго признакаДля первого признакаДля второго признака
0,6831

47,212

56,3201412,788 ≤≤ 1507,2121313,230 ≤≤ 1425,870
0,9542

96,669

115,318

1363,331 ≤≤ 1556,6691254,232 ≤≤ 1484,868
0,9973

150,205

179,182

1309,795 ≤≤ 1610,2051190,368 ≤≤ 1548,732

Учитывая близость уровней надежности 95,4% и 99,7% и значительное расхождение соответствующих им диапазонов попадания средних .

Применения в экономических исследованиях уровня надежности 99,7% не целесообразно.

Задача 4

Значения коэффициентов асимметрии As и эксцесса Ек представлены в таблице 12.

|As| 0,25 - асимметрия незначительная;

0,25<|As|0,5 - асимметрия заметная (умеренная);

|As|>0,5 - асимметрия существенная.

Таблица 12

«Среднегодовая стоимость основных фондов»
КоэффициентЗначение коэффициентаАнализ значения коэффициента
Эксцесса

-0,345

Распределение пологое
Асимметрия

-0,153

Асимметрия низкая
«Выпуск продукции»
КоэффициентЗначение коэффициентаАнализ значения коэффициента
Эксцесса-0,205Распределение пологое
Асимметрия0,0429Асимметрия низкая

В данной лабораторной работе был проведен расчет статистических показателей. После группирования исходных данных по признаку «Среднегодовая стоимость основных производственных фондов» был получен ряд распределения, на основе чего была построена гистограмма.

В результате проведенного графического анализа было установлено, что полученное эмпирическое распределение близко к нормальному закону распределения. Это предположение получило подтверждение после расчета показателей коэффициента асимметрии (As) и коэффициента эксцесса (Ек).

Рассчитанное значение коэффициента As свидетельствует о том, что асимметрия распределения является незначительной, а полученное значение коэффициента Ек говорит о том, что данное распределение по сравнению с кривой нормального распределения является пологим, т. е. значения признака рассеянны от xmin до хmaх.

III. Экономическая интерпретация результатов статистического исследования предприятий

1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?

Предприятия с резко выделяющимися значениями показателей приведены в табл.2. После их исключения из выборки оставшиеся 30 предприятий являются типичными по значениям изучаемых экономических показателей.

2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных производственных фондов и выпуска продукции?

Ответ на вопрос следует из анализа данных табл.9, где приведен диапазон значений признака (), содержащий наиболее характерные для предприятий значения показателей.

Для среднегодовой стоимости основных производственных фондов наиболее характерные значения данного показателя находятся в пределах от 745,42млн. руб. до 1054,58млн. руб. и составляют66,6% от численности совокупности.

Для выпуска продукции наиболее характерные значения данного показа-теля находятся в пределах от 663,42 млн. руб. до 1032,27млн. руб. и составляют 63,3% от численности совокупности.

3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?

Ответы на вопросы следуют из значения коэффициента вариации (табл.8), характеризующего степень однородности совокупности (см. вывод к задаче 3б). Максимальное расхождение в значениях показателей определяется размахом вариации Rn. (табл.8).

Для среднегодовой стоимости основных производственных фондов различия в значениях показателя незначительны. Максимальное расхождение в значениях данного показателя 650.млн. руб.

Для выпуска продукции различия в значениях показателя незначительны. Максимальное расхождение в значениях данного показателя 780.млн. руб.

4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных производственных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?

Структура предприятий представлена в табл.7 Рабочего файла.

Предприятия с наиболее типичными значениями показателя входят в интервал от 835млн. руб. до 965млн. руб. Их удельный вес 66,67.%. Это предприятия №№ 3,13,26,9,4,28,17,6,14,25,7.

Предприятия с наибольшими значениями показателя входят в интервал от 1095млн. руб. до 1225млн. руб. Их удельный вес 100%. Это предприятия №№ 12,21,16.

Предприятия с наименьшими значениями показателя входят в интервал от 575млн. руб. до 705.млн. руб. Их удельный вес 13,33%. Это предприятия №№ 5,23,27,1.

5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?

Ответ на вопрос следует из вывода к задаче 5 и значения коэффициента асимметрии (табл.8).

Распределение предприятий на группы по среднегодовой стоимости основных производственных фондов носит закономерный характер, близкий к нормальному. В совокупности преобладают предприятия с более низкой стоимостью основных фондов.

6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?

Ответ на первый вопрос следует из данных табл.11. Максимальное расхождение в значениях показателя определяется величиной размаха вариации RN.

По корпорации в целом ожидаемые с вероятностью 0,954 средние величины показателей находятся в интервалах:

для среднегодовой стоимости основных производственных фондов - от 870,77млн. руб. до 929,23млн. руб.;

для выпуска продукции - от 812,96млн. руб. до 882,68млн. руб.;

Максимальные расхождения в значениях показателей:

для среднегодовой стоимости основных производственных фондов -943,32.млн. руб.;

для выпуска продукции - 1125,3млн. руб.

Приложение 1

Результативные таблицы и графики

Таблица 3
Описательные статистики
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб."По столбцу "Выпуск продукции, млн. руб."
Столбец1Столбец2
Среднее1460Среднее1369,55
Стандартная ошибка46,36811107Стандартная ошибка55,31317499
Медиана1475,75Медиана1359,75
Мода1512,5Мода1365
Стандартное отклонение253,9686038Стандартное отклонение302,9627367
Дисперсия выборки64500,05172Дисперсия выборки91786,41983
Эксцесс-0,344943844Эксцесс-0,205332365
Асимметричность-0,152503649Асимметричность0,042954448
Интервал1050Интервал1260
Минимум935Минимум735
Максимум1985Максимум1995
Сумма43800Сумма41086,5
Счет30Счет30
Уровень надежности(95,4%)96,6687501Уровень надежности(95,4%)115,3175182
Таблица 4а
Предельные ошибки выборки
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб."По столбцу "Выпуск продукции, млн. руб."
Столбец1Столбец2
Уровень надежности(68,3%)47,21227907Уровень надежности(68,3%)56,32019493
Таблица 4б
Предельные ошибки выборки
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб."По столбцу "Выпуск продукции, млн. руб."
Столбец1Столбец2
Уровень надежности(99,7%)150,2053259Уровень надежности(99,7%)179,1820561
Таблица 5
Выборочные показатели вариации и асимметрии
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб."По столбцу "Выпуск продукции, млн.руб"
Стандартное отклонение249,6999199Стандартное отклонение297,8705633
Дисперсия 62350,05Дисперсия 88726,8725
Среднее линейное отклонение200,9Среднее линейное отклонение229,46
Коэффициент вариации, %17,10273424Коэффициент вариации, %21,74952089
Коэффициент асимметрии-0,21025237Коэффициент асимметрии0,015275091
Таблица 6
КарманЧастота
1
11453
13555
156511
17757
19853
Таблица 7
Интервальный ряд распределения предприятий
по стоимости основных производственных фондов
Число предприятий по стоимости основных фондовЧисло предприятий в группеНакопленная частость группы
935-1145413,33%
1145-1355530,00%
1355-15651166,67%
1565-1775790,00%
177519853100,00%
ИТОГО:30100,00%

Рис.1. Диаграмма рассеяния изучаемых признаков

Рис.2 Интегральный ряд распределения предприятий по стоимости основных фондов


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
145460
рейтинг
icon
3086
работ сдано
icon
1335
отзывов
avatar
Математика
Физика
История
icon
142040
рейтинг
icon
5871
работ сдано
icon
2651
отзывов
avatar
Химия
Экономика
Биология
icon
94768
рейтинг
icon
2025
работ сдано
icon
1268
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
53 538 оценок star star star star star
среднее 4.9 из 5
МАДИ
Нормальная цена, быстрая и качественная работа, человеческие факторы) Всё супер, спасибо!
star star star star star
Университет Синергия
Огромное благодарность Вам! Приятно было с Вами работать.. Надеюсь и на дальнейшее сотрудн...
star star star star star
ТГУ
Спасибо большое за работу, выполненную досрочно и с высоким качеством! Всем рекомендую это...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

создайте модель данных в веб-приложении Django и примените изменения в...

Решение задач, Средства програмной разработки

Срок сдачи к 17 июня

только что

реферат в соответствии с требованиями

Реферат, история государства и права России

Срок сдачи к 28 июня

1 минуту назад
1 минуту назад

чертеж компас а3

Чертеж, Инженерная графика

Срок сдачи к 18 июня

1 минуту назад

написать научную статью

Статья, Уголовная политика

Срок сдачи к 17 июля

1 минуту назад
3 минуты назад

Требований нет.

Курсовая, Технологические процессы технического обслуживания ремонта автомобилей

Срок сдачи к 30 июня

3 минуты назад

Сделать презентацию на по английскому

Презентация, Английский язык

Срок сдачи к 19 июня

4 минуты назад

Решить 6 задач по 4 варианта

Лабораторная, строительные машины

Срок сдачи к 20 июня

4 минуты назад

Произвести расчет и построить блок схему в Java.

Контрольная, Информатика в приложении к отрасли

Срок сдачи к 19 июня

5 минут назад

Сделать чертежи в Компас 3D.

Чертеж, Основы компьютерного инжиниринга.

Срок сдачи к 19 июня

5 минут назад

Ответить на несколько вопросов

Ответы на билеты, История

Срок сдачи к 19 июня

5 минут назад

Помощь на экзамене

Онлайн-помощь, Математика

Срок сдачи к 17 июня

6 минут назад
7 минут назад

Написать доклад по плану для защиты ВКР

Доклад, Юриспруденция

Срок сдачи к 18 июня

7 минут назад
7 минут назад

Необходимо написать приговор судебного заседания

Другое, Юриспруденция

Срок сдачи к 27 июня

8 минут назад

расчетно-графическую работу вариант 8

Контрольная, Теоретическая и прикладная механика, механика

Срок сдачи к 18 июня

8 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно