Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Математика. Интегралы

Тип Реферат
Предмет Математика
Просмотров
686
Размер файла
56 б
Поделиться

Ознакомительный фрагмент работы:

Математика. Интегралы

1.

*1. Говорят, что функция f(x) не убывает (не возрастает) на (a,b), если для любых точек x1<x2 из (a,b) справедливо неравенство f(x1)£f(x2) (f(x1)³f(x2)).

*2. Говорят, что функция f(x) возрастает (убывает) на (a,b), если x1<x2 из (a,b) справедливо неравенство f(x1)<f(x2) (f(x1)>f(x2)). В этом случае функцию называют монотонной на (a,b).

Т1. Дифференцируемая на (a,b) функция f(x) тогда и только тогда не убывает (не возрастает) на (a,b), когда f¢(x)³0 (£0) при любом xÎ(a,b).

Док-во: 1) Достаточность. Пусть f¢(x)³0 (£0) всюду на (a,b). Рассмотрим любые x1<x2 из (a,b). Функция f(x) дифференцируема (и непрерывна) на [x1,x2]. По теореме Лагранжа: f(x2)-f(x1)=(x2-x1)f¢(a), x1<a<x2. Т.к. (x2-x1)>0, f¢(a)³0 (£0), f(x2)-f(x1)³0 (£0), значит, f(x) не убывает (не возрастает) на (a,b). 2) Необходимость. Пусть, например, f(x) не убывает на (a,b), xÎ(a,b), x+DxÎ(a,b), Dx>0. Тогда (f(x+Dx)-f(x))/Dx³0. Переходя к приделу при Dx-0, получим f¢(x)³0. Теорема доказана.

Т2. Для возрастания (убывания) f(x) на (a,b) достаточно, чтобы f¢(x)>0 (<0) при любом xÎ(a,b). Док-во: Тоже что и в Т2.

Замечание1. Обратное к теореме 2 не имеет места, т.е. если f(x) возрастает (убывает) на (a,b), то не всегда f¢(x)>0 (<0) при любом xÎ(a,b).

*3. Прямая х=а называется вертикальной асимптотой графика функций y=f(x), если хотя бы одно из предельных значений или равно +¥ или –¥.

Замечание 2. Непрерывные функции вертикальных асимптот не имеют.

*4. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(–¥), если f(x)=kx+b+a(x), где

Т3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при x-+¥(–¥), тогда и только тогда, когда существуют , , причем при x-+¥(–¥) наклонная асимптота называется правой (левой). Док-во: Предположим, что кривая y=f(x) имеет наклонную асимптоту y=kx+b при x-+¥, т.е. имеет место равенство f(x)=kx+b+a(x). Тогда . Переходя к пределу при x-+¥, получаем . Далее из f(x)=kx+b+a(x)-b=f(x)-kx-a(x). Переходя к пределу при x-+¥, получаем . Докажем обратное утверждение. Пусть пределы, указанные в теореме, существуют и конечны. Следовательно, f(x)–kx=b+a(x), где a(x)-0, при x-+¥(–¥). Отсюда и получаем представление f(x)=kx+b+a(x). Теорема доказана.

Замечание3. При k=0 прямая y=b называется горизонтальной асимптотой, причем при x-+¥(–¥) – правой (левой).

2.

*1. Точку х0 назовем стандартной для функции f(x), если f(x) дифференцируема в точке x0 и f¢(x0)=0.

*2. Необходимое условие экстремума. Если функция y=f(x) имеет в точке x0 локальный экстремум, то либо x0 – стационарная точка, либо f не является дифференцируемой в точке x0.

Замечание 1. Необходимое условие экстремума не является достаточным.

Т1. (Первое достаточное условие экстремума). Пусть y=f(x) дифференцируема в некоторой окрестности точки x0, кроме, быть может, самой точки x0, в которой она является непрерывной. Если при переходе x через x0 слева направо f¢(x) меняет знак с + на –, то точка x0 является точкой максимума, при перемене знака с – на + точка x0 является точкой минимума. Док-во: Пусть xÎ(a,b), x¹x0, (a,b) – достаточно малая окрестность точки x0. И пусть, например, производная меняет знак с + на –. Покажем что f(x0)>f(x). По теореме Лагранжа (применительно к отрезку [x,x0] или [x0,x]) f(x)–f(x0)=(x- x0)f¢(a), где a лежит между x0 или x: а) x< x0Þx- x0<0, f¢(a)>0Þf(x)–f(x0)<0Þf(x0)>f(x); б) x>x0Þx–x0>0, f¢(a)<0Þf(x)–f(x0)<0Þf(x0)>f(x).

Замечание 2. Если f¢(x) не меняет знака при переходе через точку х0, то х0 не является точкой экстремума.

Т2. (Второе достаточное условие экстремума). Пусть x0 – стационарная точка функции y=f(x), которая имеет в точке x0 вторую производную. Тогда: 1) f¢¢( x0)>0Þf имеет в точке x0 локальный минимум. 2) f¢¢( x0)<0Þf имеет в точке x0 локальный максимум.

3.

*1. График функции y=f(x) называется выпуклым вниз (или вогнутым вверх) в промежутке (a,b), если соответствующая дуга кривой расположена выше касательной в любой точке этой дуги.

*2. График функции y=f(x) называется выпуклым вверх (или вогнутым вниз) в промежутке (a,b), если соответствующая дуга кривой расположена ниже касательной в любой точке этой дуги.

Т1. Пусть y=f(x) имеет на (a,b) конечную 2-ю производную. Тогда: 1) f¢¢(x)>0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вниз; 2) ) f¢¢(x)<0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вверх

*3. Точка (c,f(с)) графика функций f(x) называется точкой перегиба, если на (a,c) и (c,b) кривая y=f(x) имеет разные направления выпуклости ((a,b) – достаточно малая окрестность точки c).

Т2. (Необходимое условие перегиба). Если кривая y=f(x) имеет перегиб в точке (c, f(c)) и функция y=f(x) имеет в точке c непрерывную вторую производную, то f¢¢(c)=0.

Замечание1. Необходимое условие перегиба не является достаточным.

Замечание2. В точке перегиба вторая производная может не существовать.

Т3. (Первое достаточное условие перегиба). Пусть y=f(x) имеет вторую производную на cÎ(a,b), f¢¢(c)=0. Если f¢¢(x) имеет на (a,c), (c,b) разные знаки, то (c, f(c)) – точка перегиба графика f(x).

Т4. (Второе условие перегиба). Если y=f(x) имеет в точке конечную третью производную и f¢¢(c)=0, а f¢¢¢(c)¹0, тогда (c, f(c)) – точка перегиба графика f(x).

4.

*1. Первообразная от функции f(x) в данном интервале называется функция F(x), производная которой равна данной функции: F¢(x)=f(x).

T1. Всякая непрерывная функция имеет бесчисленное множество первообразных, причем любые две из них отличаются друг от друга только постоянным слагаемым. Док-во: F(x) и Ф(х) – две первообразные от f(x), тождественно не равные между собой. Имеем F¢(x)=f(x), Ф¢(х)=f(x). Вычитая одно равенство из другого, получим [F(x)–Ф(х)]¢=0. Но если производная от некоторой функции (в нашем случае от F(x)–Ф(х)) тождественно равна нулю, то сама функция есть постоянная; ÞF(x)–Ф(х)=С.

*2. Неопределенным интегралом от данной функции f(x) называется множество всех его первообразных ,где F¢(x)=f(x).

5.

Свойства неопределенного интеграла:

  1. Производная НИ =подынтегральной функции; дифференциал от НИ равен подынтегральному выражению: ; . Док-во: ;
  2. НИ от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого: . Док-во: Обозначим . На основании первого св-ва: , откуда , т.е. .
  3. НИ от суммы конечного числа функций равен сумме интегралов от слагаемых функций: , где u, v, …,w-функции независимой переменной х. Док-во:
  4. Постоянный множитель можно выносить за знак НИ:, где с – константа. Док-во .

Т2. (об инвариантности формул интегрирования): Пусть òf(x)dx=F(x)+C – какая-либо известная формула интегрирования и u=ф(х) – любая функция, имеющая непрерывную производную. Тогда òf(u)du=F(u)+C. Док-во: Из того, что òf(x)dx=F(x)+C, следует F¢(x)=f(x). Возьмем функцию F(u)=F[ф(x)]; для её дифференциала, в силу теоремы об инвариантности вида первого дифференциала функции, имеем: dF(u)=F¢(u)du=f(u)du. Отсюда òf(u)du=òdF(u)=f(u)+C.

6.

Метод замены переменных.

1) Подведение под знак дифференциала. Т1. Пусть функция y=f(x) определена и дифференцируема, пусть также существует f(x)=f(j(t)) тогда если функция f(x) имеет первообразную то справедлива формула: –формула замены переменных. Док-во: пусть F(x) для функции f(x), т.е. F¢(x)=f(x). Найдем первообразную для f(j(t)), [F(j(t))]¢t=F¢(x)(j(t)) j¢(t)=F¢(x) j¢(t)=f(x) j¢(t). òf(x) j¢(t)dt=f(j(t))+C. F(j(t))+C=[F(x)+C]|x=j(t)=òf(x)dx|x=j(t).

Замечание1. При интегрировании иногда целесообразно подбирать подстановку не в виде x=j(t), а в виде t=j(x).

2) Подведение под знак дифференциала. F(x)dx=g(j(x)) j¢(x)dx=g(u)du. òf(x)dx=òg(j(x)) j¢(x)dx=òg(u)du.

  1. dx=d(x+b), где b=const;
  2. dx=1/ad(ax), a¹0;
  3. dx=1/ad(ax+b), a¹0;
  4. ф¢(х)dx=dф(x);
  5. xdx=1/2 d(x2+b);
  6. sinxdx=d(-cosx);
  7. cosxdx=d(sinx);

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

7.

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

Интегрирование функций, содержащих квадратный трехчлен:

Первый интеграл табличного вида: òdu/uk:

Второй интеграл сводится к нахождению интеграла: где u=x+p/2, a=, q-p2/4>0

– рекуррентная формула.

Интегрирование рациональных функций: R(x)=P(x)/Q(x), R(x)-рациональная функция, P(x) и Q(x)-многочлены. Дробь P(x)/Q(x) можно разложить в сумму простейших дробей, где Ai, Bi, Ci – постоянные, а именно: каждому множителю (x-a)k в представлении знаменателя Q(x) соответствует в разложении дроби P(x)/Q(x) на слагаемые сумма k простейших дробей типа а каждому множителю (x2+px+q)t соответствует сумма t простейших дробей типа . Таким образом при разложении знаменателя Q(x) на множители имеет место разложение дроби P(x)/Q(x) на слагаемые.

Правила интегрирования рациональных дробей:

  1. Если рац. дробь неправильная, то её представляют в виде суммы многочлена и неправильной дроби.
  2. Разлагают знаменатель правильной дроби на множетели.

Правую рац. дробь разлагают на сумму простейших дробей. Этим самым интегрирование правильной рац. дроби сводят к интегрированию простейших дробей.

8.

Интегрирование тригонометрических функций:

I. 1 Интеграл вида:

2 R(sinx, cosx) – нечетная функция относительно sinx, то cosx=t.

3 R(sinx, cosx) – нечетная функция относительно cosx, то sinx=t.

4 R(sinx, cosx) – нечетная функция относительно sinx и cosx, то tgx=t.

II. 1

2 Оба показателя степени m и n – четные положительные числа: sinxcosx=1/2 sin2x; sin2x=1/2(1-cos2x); cos2x=1/2(1+cos2x).

III. òtgmxdx и òctgmxdx, где m-целое положительное число. tg2x=sec2x-1 или ctg2x=cosec2x –1.

IV. òtgmxsecnxdx и òctgmxcosecnxdx, где n – четное положительное число. sec2x=1+tg2x или cosec2x=1+ctg2x.

V. òsinmx*cosnxdx, òcosmx*cosnxdx, òsinmx*sinnxdx; sinacosb=1/2(sin(a+b)+sin(a-b)); cosacosb=1/2(cos(a+b)+cos(a-b)); sinasinb=1/2(cos(a-b)-cos(a+b));

9.

Интегрирование иррациональных функций:

I. 1 òR(x, , ,…)dx, k-общий знаменатель дробей m/n, r/s…. x=tk, dx=ktk–1dt

2 òR(x,, …)dx, , x=, dx=

II. 1 Вынести 1/Öa или 1/Ö-a. И выделим полные квадраты.

2

3 Разбить на два интеграла.

4

III. 1

2

3

1)p-целое число x=tS, где s- наименьшее общее кратное знаменателей у дробей m и n. 2) (m+1)/n –целое число: a+bxn=tS; 3) p+(m+1)/n-целое число: a-n+b=tS и где s- знаменатель дроби p.

10.

Определенный интеграл:

1) интервал [a,b], в котором задана функция f(x), разбивается на n частичных интервалов при помощи точек a=x0<x1<…<xn–1<xn=b;

2) Значение функции f(xI) в какой нибудь точке xiÎ[xi–xi–1] умножается на длину этого интервала xi–xi–1, т.е. составляется произведение f(xi)(xi–xi–1);

3) , где xi–xi–1=Dxi;

I=– этот предел (если он существует) называется определенным интегралом, или интегралом от функции f(x) на интервале [a,b], обозначается

*1. Определенным интегралом называется предел интегральной суммы при стремлении к нулю длинны наибольшего частичного интеграла (в предположении, что предел существует).

Т1. (Необходимое условие существования интеграла): Если ОИ существует, т.е. функция f(x) интегрируема не [a,b], то f(x) ограничена на этом отрезке. Но этого не достаточно. Док-во: Функция Дирихле:


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно