Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Построение концептуальной модели

Тип Реферат
Предмет Информатика
Просмотров
766
Размер файла
76 б
Поделиться

Ознакомительный фрагмент работы:

Построение концептуальной модели

Содержание

Введение

1Постановка задачи

2 Построение концептуальной модели

2.1 Описание концептуальной модели СМО

2.2 Описание процесса функционирования СМО

2.3 Построение логической схемы

2.4 Анализ задачи моделирования

2.4.1 Критерии оценки эффективности процесса функционирования СМО

2.4.2 Проверка достоверности модели системы

2.4.3 Параметры и переменные модели СМО

2.5 Выдвижение гипотез и принятие предложений

2.6 Определение процедур аппроксимации

3 Алгоритмизация и машинная реализация модели системы

3.1 Выбор вычислительных средств моделирования СМО

3.2 Программирование модели

4Получение и интерпретация результатов моделирования

4.1 Планирование машинного эксперимента

4.2 Анализ результатов моделирования

4.3 Форма представления результатов моделирования

Заключение

Список использованных источников

Приложение А – Листинг программы

Приложение Б – Статистические данные


Введение

Бурный рост промышленности и науки во всех сферах человеческой деятельности привёл в настоящее время к такому положению вещей, что создание и разработка каких-либо новых технологий, технических средств (машин, приборов, оборудования и т. п.), а также методик их применения для нужд человека становится затруднительным, а в некоторых случаях невозможным, без интенсивного применения научных методов познания и поиска.

Одной из таких обязательных сторон научного исследования является метод моделирования, без которого не обходится ни одна конструкторская и ни одна исследовательская работа.

Всякое вновь изучаемое явление или процесс бесконечно сложно и многообразно и потому до конца принципиально не познаваемо и не изучаемо. Поэтому, приступая к изучению явления или процесса, исследователь заменяет его схематической моделью, которая выбирается тем более сложной, чем подробнее и точнее нужно изучить упомянутое явления. В модели сохраняется только самые существенные стороны изучаемого явления, а все мало существенные свойства и закономерности отбрасываются.

Какие стороны изучаемого явления необходимо сохранить в модели и какие отбросить, зависит от постановки задачи исследований. Цель и задачи исследований формулируются перед началом разработки теории еще неизученного явления или уточнения уже существующей теории с целью более адекватного описания изучаемого процесса или явления.

При решении любой задачи основную роль играют эксперимент и модель, а также анализ полученных результатов. Модель дает правильно поставленный эксперимент, а эксперимент уточняет модель. Эксперимент имеет два направления: обработка результатов и планирование эксперимента.

Достоверность модели достигается посредством наблюдения и логически правильной обработки данных.

Моделирование широко применяется в технике. Это и исследование гидроэнергетических объектов и космических ракет, специальные модели для наладки приборов управления и тренировки персонала, управляющего различными сложными объектами. Многообразно применение моделирования в военной технике. В последнее время особое значение пробрело моделирование биологических и физиологических процессов.

Общеизвестна роль моделирования общественно-исторических процессов. Применение моделей позволяет проводить контролируемые эксперименты в ситуациях, где экспериментирование на реальных объектах является практически невозможным или по каким-то причинам (экономическим, нравственным и т. д.) нецелесообразным.

Большое значение на современном этапе развития науки и техники приобретают задачи предсказания, управления, распознавания. Метод эволюционного моделирования возник при попытке воспроизведения на ЭВМ поведения человека. Эволюционное моделирование было предложено как альтернатива эвристическому и бионическому подходу, моделировавшему мозг человека в нейронных структурах и сетях. При этом основная идея звучала так: заменить процесс моделирования интеллекта моделированием процесса его эволюции.

Таким образом, моделирование превращается в один из универсальных методов познания в сочетании с ЭВМ.


1 Постановка задачи

Распределенный банк данных системы сбора информации организован на базе ЭВМ, соединенных дуплексным каналом связи. Поступающий запрос обрабатывается на первой ЭВМ и с вероятностью 50% необходимая информация обнаруживается на месте. В противном случае необходима посылка запроса во вторую ЭВМ. Запросы поступают через 10±3 с, первичная обработка запроса занимает 2с, выдача ответа требует 18±2 с, передача по каналу связи занимает 3с. Временные характеристики второй ЭВМ аналогичны первой.

Смоделировать прохождение 400 запросов. Определить необходимую емкость накопителей перед ЭВМ, обеспечивающую безотказную работу системы, и функцию распределения времени обслуживания заявки.

В данной курсовой работе предполагается смоделировать работу поступления и обработку запросов на 2 – х ЭВМ от распределённого банка, определить характеристики процесса функционирования СМО: рассчитать коэффициенты загрузки каналов, нужную ёмкость накопителей перед ЭВМ, обеспечивая безотказную работу системы.

Всю работу можно условно разделить на три этапа:

· На первом этапе предполагается разработать концептуальную модель СМО, вывести математическую модель процесса функционирования СМО, провести глубокий анализ задачи моделирования и на его основе при необходимости выдвинуть гипотезы и принять соответствующие предположения.

· На втором этапе предполагается провести выбор вычислительных средств для моделирования СМО, выполнить непосредственно машинную реализацию модели системы, протестировать программу.

· На третьем, заключительном, этапе предполагается зафиксировать результаты моделирования СМО при нескольких прогонах программы, проанализировать их, представить в удобной для чтения форме, интерпретировать их и сделать соответствующие выводы.


2 Построение концептуальной модели и её формализация

2.1 Описание концептуальной модели СМО

На основании условия задачи построим концептуальную схему процесса функционирования данной системы, приведённую на рисунке 2.1.

Рисунок 2.1 – Концептуальная схема модели системы

Таким образом, в работе СМО возможны следующие ситуации:

— режим нормального обслуживания, когда запрос обрабатывается на первой ЭВМ с вероятностью 50 %, иначе – на второй, либо, при наличии свободных мест в двух очередях, ожидает своего времени;

— режим отказа в обслуживании, когда запрос покидает систему вследствие занятости ЭВМ и переполнении очереди другими запросами.

Рисунок 2.2 – Структурная схема


Структурная схема модели является выражением концептуальной, переведенной на язык мат. схем. Учитывая, что процессы, происходящие в СМО, являются процессами обслуживания заявок, используем для их формализации аппарат Q-схем. В соответствии с концептуальной моделью, используя символику Q-схем, структурная схема модели может быть представлена в виде, показанном на рисунке 2.2, где Н – накопители, К – каналы, И - источник.

Накопители Н1 и Н2 имитируют процесс ожидания пользователей в очереди, который происходит при занятости ЭВМ обработкой запросов. Пунктирные линии означают обработку запросов ЭВМ № 2 при условии, что на ЭВМ № 1 ответ на запрос отсутствует.

Каналы К1 и К2 имитируют непосредственно обработку запросов на ЭВМ.

2.2 Описание процесса функционирования СМО

С использованием введённых обозначений опишем процесс функционирования СМО. Источник генерирует сигналы случайным образом через определенные промежутки времени (10±3 сек). Поступающие заявки попадают в очередь в накопитель № 1 и ожидают в ней, если первая машина занята. Как только первая машина освобождается и в накопителе имеются заявки происходит первичная обработка запроса в течении 2 сек, после которой если нужная информация находится на первой ЭВМ то она продолжает обрабатываться в течении 18±2 сек, иначе заявка поступает в очередь в накопитель № 2. Процесс функционирования и временные характеристики ЭВМ №2 идентичны. Заявка полностью обрабатывает на ЭВМ №1 с вероятностью 50%, это обеспечивается путём подсчёта количества запросов обработанных на первой ЭВМ и числа запросов прошедших через накопитель № 1. Если первое число меньше либо равно 50% второго числа, то запрос обрабатывается на первой ЭВМ.

2.3Построение логической схемы

Для более полного понимания алгоритма модели необходимо построить логическую схему модели. Построение логической схемы модели системы из таких блоков дает ряд преимуществ на стадии ее машинной разработки, а также упрощает понимание структуры модели. При построении блочной модели проводится разбиение общего процесса функционирования системы на отдельные более мелкие по масштабу процессы.

Существует 2 вида схем для рассмотрения логической структуры модели процесса функционирования систем: обобщенные схемы и детальные схемы моделирующих алгоритмов.

Укрупненная (обобщенная) схема модели задает общий порядок действий без каких-либо уточняющих деталей. Детальная схема модели содержит уточнения, отсутствующие в обобщенной схеме, и показывает, что следует выполнить на каждом шаге и как это выполнить. При ее построении учитывается, что моделирующий механизм имеет блочную структуру. Фактически обобщенная схема — это обобщенный вид блок-схемы, показывающий основные этапы.


Рисунок -2.3.1. Логическая обобщенная схема

2.4 Анализ задачи моделирования

2.4.1 Критерии оценки эффективности процесса функционирования СМО

В рассматриваемой задаче в качестве критериев оценки эффективности процесса функционирования СМО выступают следующие вероятностно-временные характеристики:

— вероятность отказа вследствие переполнения очереди;

— коэффициенты загрузки ЭВМ.

Эти вероятностно-временные характеристики взаимосвязаны между собой: чем больше коэффициенты загрузки каналов, тем большее количество человек будет обслужено (малая вероятность отказа). Но, в то же время, при больших коэффициентах загрузки возможны сбои в системе, из-за ограничения количества человек в очереди.

Таким образом, об эффективности процесса функционирования СМО мы будем судить по количеству сбойных сигналов: чем меньше их, тем эффективнее система.

2.4.2 Проверка достоверности модели системы

Проверка достоверности модели системы является немаловажной на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы, то до тех пор, пока не доказана достоверность модели, нельзя утверждать, что с ее помощью мы получили результаты, адекватные тем, которые могли бы быть получены при проведении реального эксперимента с системой. При этом проверяются возможность решения постановленной задачи, точность отражения замысла в логической схеме, полнота логической схемы модели, правильность используемых математических соотношений. Только после этого можно считать, что имеется логическая схема модели, пригодная для дальнейшей работы по реализации модели на ЭВМ.

Так как построенная модель основана на доводах, признанными верными, она отвечает требованию соответствия. В самом деле, легко проследить и переходы заявок, и управляющие воздействия, и структурированность модели.

Подготовленную в таком виде, ее будет легче программировать, а найденные математические выражения явятся основой получения результатов. Так как формулы не вызывают сомнений, составленные схемы не противоречат концептуальной, то принимаем модель достоверной и приступаем к машинной реализации.

2.4.3 Параметры и переменные модели СМО

Прежде, чем перейти к описанию математической модели, необходимо определить параметры системы, входные и выходные переменные, воздействия внешней среды.

Для моделируемой СМО в качестве параметра может быть выбрана ёмкость накопителей Н1 и Н2, которые представляют собой очереди заявок. Ёмкость буферных накопителей Н1 и Н2 будем измерять в количестве запросов, которые могут в них (очередях) находиться. В модели эти параметры подбираются для эффективности работы ЭВМ.

В качестве эндогенных (зависимых) переменных модели СМО зададим: число запросов, покинувших систему не обслуженными из-за заполненности накопителей. В модели переменная представляет собой выходную характеристику и вычисляется постоянным суммированием покидающих систему не обслуженных заявок.

В качестве экзогенных (независимых) переменных модели СМО выберем время посылки сигналов в источнике, представляющее собой случайную величину, генерируемую датчиком случайных чисел с требуемым законом распределения.

2.5 Выдвижение гипотез и принятие предположений

Исходя из сведений, можно сделать вывод о возможности построения модели на основании имеющегося объёма исходной информации, и её последующей машинной реализации при условии принятия ряда гипотез и предположений относительно функций распределения параметров процессов, происходящих в СМО, и воздействий внешней среды.

Анализируя условие задачи, приходим к выводу, что поток поступающих запросов СМО представляет собой поочерёдное поступление запросов с равномерным законом распределения между моментами их появления и, следовательно, с одинаковой интенсивностью.

Анализируя имеющуюся исходную информацию о СМО, можно сделать вывод, что загруженность каналов, так же как и очереди, будет не полной, а число необслуженных запросов будет сведена к нулю, т.е. СМО обеспечит обслуживание всех поступивших заявок.


2.6 Определение процедур аппроксимации

Для возможности аппроксимации числовых значений интересующих характеристик системы S необходимо в процессе моделирования провести аппроксимации, для чего обычно используются процедуры: детерминированная, вероятностная и (или) процедура определения средних значений.

- детерминированные процедуры, при которых результаты моделирования однозначно определяются по данной совокупности входных воздействий переменных и параметров системы (в этом случае случайные элементы отсутствуют). Этот тип нам не подходит, так как у нас наличествует элемент случайности при поступлении заявок в систему;

- вероятностные (рандомизированные) применяются, когда случайные элементы, включая воздействие внешней среды, влияют на функционирование системы и необходимо получить закон распределения выходных переменных системы;

- определение средних значений, когда результатом моделирования являются средние значения выходной переменной при наличии случайных переменных или случайных воздействий;

Для рассматриваемой задачи моделирования СМО будем использовать как вероятностную процедуру, так и процедуру определения средних значений. Использование вероятностной процедуры объясняется тем, что в функционировании СМО присутствуют случайные элементы, влияющие на результаты моделирования. Процедура определения средних значений при моделировании процесса функционирования СМО используются по причине того, что интерес представляют средние значения выходных переменных при наличии случайных факторов: среднее число заявок в очереди и средняя загрузка ЭВМ.


3 Алгоритмизация и машинная реализация модели системы

3.1 Выбор вычислительных средств моделирования СМО

На втором этапе моделирования математическая модель, сформи­рованная на первом этапе, воплощается в конкретную машинную модель. Этот этап представляет собой этап практической деятельности, направленной на реализацию идей и математических схем в виде машинной модели процесса функционирования системы, ориентированной на использование конкретных программно - технических средств

Процессы, происходящие в СМО (поступление запросов в систему через разные промежутки времени, освобождение и занятие ЭВМ в различные моменты времени), имеют дискретный и равномерный характер. С учётом этого, а также исходя из стремления сокращения затрат времени на разработку модели СМО, для машинной реализации модели процесса функционирования СМО был выбран язык объектно-ориентированного программирования Delphi 6.

Мы выбрали именно эту среду потому, что она является наиболее оптимальной для решения всех поставленных задач в ходе курсового проекта. Программная среда Delphi 6.0 содержит в себе визуальные компоненты, такие как TButton, TLabel, TChart, TEdit, TPanel и многие другие, которые упрощают и оптимизируют работу разработчика. Важно отметить, что в среде Delphi очень просто отобразить выходные величины, с помощью компонентов TChart и TStringrig.

Исходя из этих соображений можем сказать, что для работы данной модели достаточно любого современного IBMPC совместимого компьютера, работающего под управлением ОС Windows 98 и выше.


3.2 Программирование модели

Программирование в среде Delphi, можно разделить на два этапа: создание интерфейса и написание программного кода.

Основная работа программы осуществляется следующим образом:

Источник генерирует заявки через дискретные промежутки времени, в которые производится смена состояний элементов системы. Исходя из постановки задачи неизменные данные являются продолжительность моделирования (400 сек), время поступления запросов (10±3сек), первичная обработка запроса (2 сек), выдача ответа (18±2 сек), и изменяемые – ёмкость накопителя № 1 и № 2, манипулируя которыми достигается оптимальность системы. После ввода ёмкости накопителя № 1 и № 2 следует нажать на кнопку «Выполнить» для начала работы программы. После чего в нижнем окне будут выведены все найденные параметры системы и столбцовая диаграмма, отражающая количество сигналов в накопителе №1 в единицу времени, в которую в каждую единицу времени добавляется объём накопителя № 1 (рис 3.2.1).


Рисунок 3.2.1- Внешний вид программы.

Листинг программы представлен в приложении А.


4 Получение и интерпретация результатов моделирования

4.1 Планирование машинного эксперимента

Перед проведением рабочих расчетов на ЭВМ должен быть составлен план проведения эксперимента. Проведение планирования машинных экспериментов призвано дать возможность получить максимальный объем необходимой информации об объекте моделирования при минимальных затратах ресурсов ЭВМ. Решаются частные задачи планирования конкретного машинного эксперимента при уже заданных условиях его проведения и выбранных инструментальной ЭВМ и ее математического обеспечения.

Так как модель стохастична, в ней присутствует случайный элемент (время поступления заявок), то и результаты не будут одинаковы для двух запусков программы. Но тем не менее, можно определить некое число, к которому будет стремиться конкретный параметр (ранее мы выбрали из трех методов аппроксимации метод определения средних значений). Для этого необходимо увеличить количество прогонов программы, или, говоря языком теории вероятностей, число опытов. Это число должно быть конечным, и точность результатов при нем достаточно высока.

Определим количество прогонов необходимых для получения достоверной информации по формуле (1):

(1)

где:p- частота = n1/n;

n1 - число исходов в n – экспериментах;

Q- доверительная вероятность;

Ф-1 -обратная функция Лапласа.

Таблица 4.1.1- Обратная функция Лапласа.

Q0.90.950.980.99
-1 *Q/2)22.73.845.76.61

Исходя из задания Q=0.95, Е=0.05 следовательно (Ф-1 *Q/2)2 = 3,84

Проведем 10 экспериментов на модели (n=10) и проследим за значением расчетной величины – вероятностью отказа. Т.к. по при длине очереди накопителя № 1 равной 5, сбойных сигналов нет, то, следовательно, вероятность отказа будет равна 0, что делает невозможным расчет количества прогонов. Поэтому будем вести расчет при длине очереди накопителя № 1 и № 2 равной 1, только при этом значении наблюдается появление сбойных сигналов.

Таблица 4.1.2 – Экспериментальные данные.

№ экспКол.-во сбоев№ экспКол-во сбоев
18610
21078
31087
46910
59109

n=8+10+10+6+9+10+8+7+10+9=87;

p1=8/87=0,091954; p6=10/87=0,114943;

р2=10/87=0,114943;р7=8/87=0,091954;

р3=10/87=0,114943;р8=7/87=0,08046;

р4=6/87=0,068966;р9=10/87=0,114943;

р5=9/87=0,103448;р10=9/87=0,103448;

Выбираем самую худшую (большую) вероятность - 0,114943 и подставляем её в формулу (1):


Следовательно, чтобы точность экспериментов составляла 0.95 необходимо произвести 156 эксперимента. Статистические данные и результаты всех прогонов представлены в приложении Б.

4.2 Анализ результатов моделирования

По полученным результатам моделирования рассчитаем математическое ожидание величины — вероятность отказа— по формуле (2):

M[X] = X1*P1+X2*P2………..Xn*Pn , (2)

где P = Ni/N;

N — количество опытов (прогонов);

Ni — количество появлений Xiв опытах.

По приложению Б определяемx, n, p (таблица 4.2)

Таблица 4.2 – Результаты моделирования

Xi00,004219410,01265820,008438820,0168776
Ni363833481
Pi0,2307692310,243589740,21153850,307692310,0064103

М[X]= 0+ 0,0010278+ 0,0026777+ 0,00259656+ 0,0001082= 0,0064103

Дисперсию рассчитаем по формуле (3):

D[X]=∑(Xi-M)2 *Pi (3)

D[X]= 0,0000095+ 0,0000012+ 0,0000083+ 0,0000013+ 0,0000007= 0,00002

4.3 Форма представления результатов моделирования

В каждом конкретном случае целесообразно выбирать наиболее подходящую форму представления результатов моделирования (таблицы, графики, диаграммы, гистограммы, схемы и т.п.) т.к. это существенно влияет на эффективность дальнейшего использования результатов моделирования (например, заказчиком). В большинстве случаев удобнее результаты моделирования сводить в таблицы.

В рассматриваемой задаче моделирования СМО на экран монитора окончательный результат выводится в отдельном окне, в виде таблицы.


Заключение

В данной курсовой работе успешно были разработаны концептуальная, математическая и машинная модели процесса функционирования СМО.

Полученные на ЭВМ результаты моделирования процесса функционирования СМО отражают основные особенности функционирования реального объекта и позволяют качественно и количественно оценить его поведение. На основе полученных оценок характеристик можно сделать следующие выводы и дать соответствующие рекомендации.

Полученные результаты моделирования системы показывают достаточно эффективную работу системы при средней загрузке ЭВМ №1 98% и ЭВМ №2 80%, при этом в системе происходит минимальное количество сбоев и идет 100% обслуживание заявок. Для улучшения параметров системы можно увеличить ёмкость накопителя № 1 до 7 заявок, но при этом его загруженность снизится в среднем до 40 %.

В целом создание программы, моделирующей систему массового обслуживания, можно считать удачным. Алгоритм разрабатывался максимально простой и эффективный. Результаты моделирования показали не только эффективность работы данной системы, но и возможные пути повышения её производительности.


Список использованных источников

1. Бусленко Н.П. Моделирование сложных систем // – М.: Наука, 1978. - 51с.

2. Лифшиц А.Л. Статистическое моделирование СМО, М., 1978. -216 с.

3. Мухин О. И. Моделирование систем. Конспект лекций - 1985. - 95с.

4. Советов Б.Я., Яковлев С.А. Моделирование систем // Учебник для ВУЗов -М.: Высшая школа, 1985. - 224 с.

5. Советов Б.Я., Яковлев С.А. Моделирование систем // Курсовое проектирование -М.: Высшая школа, 1988. - 232 с.

6. Архангельский А. Я. Программирование в Delphi 5.–М.:ЗАО «Издательство БИНОМ», 2000.–1070 с.

7. Бобровский С. И. Delphi 5: Учебный курс. – СПб.: Питер, 2002. – 640 с.

8. Вендров А. М. Проектирование программного обеспечения ЭИС. М.: «Финансы и статистика», 2000. – 452 с.


Приложение А

(обязательное)

Листинг программы

unitUnit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, Spin, ExtCtrls, TeEngine, Series, TeeProcs, Chart;

type

TForm1 = class(TForm)

Button1: TButton;

ListBox1: TListBox;

GroupBox1: TGroupBox;

GroupBox2: TGroupBox;

Image1: TImage;

Label1: TLabel;

Label3: TLabel;

GroupBox4: TGroupBox;

Label6: TLabel;

seNak: TSpinEdit;

Label7: TLabel;

seNak2: TSpinEdit;

Label2: TLabel;

Label4: TLabel;

Chart1: TChart;

Series1: TBarSeries;

procedure Button1Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

procedure Kanal;

procedure Istok;

procedure Kanal_2;

end;

var

Form1: TForm1;

ZKan,zkan_2:boolean;

t1,t2,n,t,tIstok,InSig,VNak,Sboy,OutSig,tkan,SZKan,SZNak,sekanal_2,sboy_2,outsig_2,SZNak_2,szkan_2,tkan_2,vnak_2:integer;

in_k1:byte;

{ var nak_2:byte;{накопительдляканала № 2}

{colnak1-кол-во сигналов, пройденных через накопитель 1}

{in_k1-true-сигнал обслуж-ся каналом № 1, false-сигнал обслуж-ся каналом № 2}

implementation

{$R *.dfm}

procedure TForm1.Button1Click(Sender: TObject);

var j:integer;

begin

VNak:=0; {Накопитель}

Sboy:=0;

sboy_2:=0;

InSig:=0;{подсчетпосланныхсигналов}

OutSig:=0;{подсчет количества сигналов, покинувших систему обслуженными}

vnak_2:=0;

outsig_2:=0;

SZNak:=0;{подсчет средней занятости накопителя в сигналах}

SZNak_2:=0;{подсчет средней занятости накопителя в сигналах}

SZKan:=0;{подсчет количества единиц времени, которое канал находится в состоянии занятости}

szkan_2:=0;

ZKan:=False; {состояние канала}

ZKan_2:=false;

in_k1:=0;

ListBox1.Items.Clear;

T:=0;

tIstok:=T+7+random(7);

Series1.Clear;

Repeat

Istok;

Kanal;

kanal_2;

SZNak:=SZNak+VNak;

SZNak_2:=SZNak_2+VNak_2;

inc(t);

Series1.Add(vnak); {добавление данных в диаграмму о накопителе №1}

Until T>400;

with ListBox1.Items do

begin { zkan_2:boolean;sekanal_2,sboy_2,outsig_2,szkan_2,tkan_2:integer;}

{ Add('Должно поступить сигналов: '+IntToStr(400 div 10));}

Add('Поступло сигналов: '+IntToStr(InSig));

Add('Обработано сигналов каналом № 1: '+IntToStr(OutSig));

Add('Обработано сигналов каналом № 2: '+IntToStr(OutSig_2));

Add('Сбойных сигналов: '+IntToStr(Sboy+sboy_2));

if ZKan then Inc(VNak);

Add('Учтенныхсигналов: '+IntToStr(VNak+vnak_2+Sboy+sboy_2+OutSig+OutSig_2));

if ZKan_2 then Inc(VNak);

if t-t1<3 then Inc(VNak);

if t-t2<3 then Inc(VNak);

Add('Осталось в системе сигналов: '+IntToStr(VNak));

Add('Средняя занятость накопителя № 1 (в сиг.): ' + FloatToStrF(SZNak/400,ffNumber,8,2));

Add('Средняя занятость накопителя № 1 (в %): ' + IntToStr(Round(SZNak/400/seNak.Value*100)));

Add('Средняя занятость накопителя № 2 (в сиг.): ' + FloatToStrF(SZNak_2/400,ffNumber,8,2));

Add('Средняя занятость накопителя № 2 (в %): ' + IntToStr(Round(SZNak_2/400/seNak2.Value*100)));

Add('Средняя занятость канала № 1 (в %): '+ IntToStr(Round(SZKan/400*100)));

Add('Средняя занятость канала № 2 (в %): '+ IntToStr(Round(SZKan_2/400*100)));

end;

end;

procedure TForm1.Kanal;

begin

if ZKan

then

begin

Dec(tKan);

Inc(SZKan);{подсчет количества единиц времени, которое канал находится в состоянии занятости}

if tKan=0 {время, оставшееся до конца обработки сигнала}

then

begin

ZKan:=False;

if in_k1=1 then begin

Inc(OutSig){подсчет количества сигналов, покинувших канал № 1 обслуженными};

t1:=t;

end

else begin

if vnak_2<seNak2.Value then inc(vnak_2)

else inc(sboy_2);

end;

end;

end;

if not ZKan and (VNak>0)

then

begin

Dec(VNak);

if in_k1=1 then in_k1:=0

else in_k1:=1;

ZKan:=True;

if in_k1=1 then tKan:=2+16+random(5){18+/-2:количество единиц времени, отводимое на обработку одного сигнала}

else tKan:=2;

end;

end;

procedure TForm1.Istok;

begin

{ if T mod N=0

then

tIstok:=T+7+random(7); {источник}

if T=tIstok

then

begin

tIstok:=T+7+random(7); {источник}

Inc(InSig); {подсчет посланных сигналов}

if VNak<seNak.Value{ёмкость накопителя}

then begin

Inc(VNak);

end

else Inc(Sboy);

end;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

randomize;

end;

procedure TForm1.Kanal_2;

begin

if ZKan_2

then

begin

Dec(tKan_2);

Inc(SZKan_2);{подсчет количества единиц времени, которое канал находится в состоянии занятости}

if tKan_2=0 {время, оставшееся до конца обработки сигнала}

then

begin

ZKan_2:=False;

Inc(OutSig_2);{подсчет количества сигналов, покинувших систему обслуженными}

t2:=t;

end;

end;

if not ZKan_2 and (VNak_2>0)

then

begin

Dec(VNak_2);

ZKan_2:=True;

tKan_2:=16+random(5);{количество единиц времени, отводимое на обработку одного сигнала}

end;

end;

end.


Приложение Б

(обязательное)

Статистические данные

№ эксп.Поступило заявок, штНеобслужено заявок, штВероятность отказа, %Загрузка накопителя№1, %
1380046
23910,00421957
34130,01265857
44020,00843959
54030,01265850
63920,00843960
74030,01265858
83810,00421940
94130,01265866
104240,01687862
114020,00843952
124030,01265860
13380039
144130,01265858
154020,00843946
164020,00843959
174020,00843968
183910,00421950
194020,00843953
203910,00421932
213920,00843948
223910,00421960
23370026
24400042
25380050
263810,00421952
274020,00843964
283910,00421932
294020,00843959
304030,01265850
313920,00843966
323810,00421950
333930,01265845
344010,00421956
353720,00843965
363830,01265850
37380054
38370053
393910,00421945
403920,00843948
41390048
424010,00421949
433720,00843950
44380059
453810,00421938
463720,00843939
47400040
48390050
49380056
504010,00421953
513720,00843955
52370049
533910,00421966
543820,00843933
55390056
563930,01265865
57400045
584120,00843958
594120,00843956
603720,00843959
613810,00421948
623830,01265859
633830,01265867
644030,01265856
653920,00843965
66390048
674010,00421968
684120,00843959
693730,01265848
70370056
713820,00843945
723830,01265856
73390064
744010,00421956
753920,00843945
763730,01265836
77380042
784010,00421946
793720,00843943
804020,00843948
814120,00843959
824110,00421956
83370055
843830,01265854
853820,00843953
86390052
873930,01265857
883920,00843955
894010,00421942
90410053
914120,00843961
923830,01265856
933820,00843965
94390049
953710,00421965
963820,00843967
973830,01265862
98390053
994010,00421954
1004020,00843948
1014030,01265850
1023830,01265860
1033910,00421945
1043920,00843946
105370056
1063730,01265852
1074020,00843938
1084010,00421946
1093730,01265847
1103830,01265842
1113920,00843956
1123910,00421951
1134010,00421960
114400065
1154110,00421953
1164110,00421957
1174120,00843942
118390046
119380056
120370051
1213730,01265853
1223920,00843959
1234010,00421940
1244030,01265845
125410047
1264110,00421948
1274020,00843950
128380056
1293810,00421960
1303920,00843964
1313820,00843949
1323710,00421950
133400040
1343730,01265848
1353930,01265847
1363820,00843949
1374030,01265843
1384130,01265840
1393930,01265842
1403820,00843941
1413710,00421946
142390049
143390056
144400057
1454010,00421959
1464120,00843958
147390057
1483910,00421950
1493820,00843950
1503820,00843960
1513810,00421964
1523720,00843967
1533810,00421942
1543830,01265853
1553920,00843962
1563910,00421948

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно