это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Полуточка: модель скорости
Каратаев Евгений Анатольевич
Настоящая статья строит модель скорости в рамках модели полуточки и приводит две простых иллюстрации, демонстрирующие и иллюстрирующие модель скорости в общеизвестных случаях поступательной и вращательной скорости. В статье приводится в основном модель скорости, и разбор отдельных случаев скорости и её видов представляется либо темой отдельной статьи, либо большой работы о кинематике, выраженной на языке гиперкомплексных чисел.
Для понимания предлагаемой модели скорости частично повторим основные положения модели полуточки и модели миров.
Точка пространства испытывает изменение при переходе от одной системы отсчёта к другой:
| (1) |
Считается, что точка принадлежит миру с временем :
| (2) |
В этой статье понятия системы координат и системы отсчёта полагаются совпадающими. Полагается, что положение точки и её состояние измеряются в некоторой идеальной системе, выбираемой наблюдателем по его усмотрению.
Состояния точки в два различных момента времени могут быть определены относительно одной и той же системы координат. Будем полагать, что из первого состояния во второе можно попасть, совершив преобразование системы координат:
| (3) |
Здесь величина определяет преобразование, которое следует совершить для такого перехода. При этом есть разность времён этих двух миров:
| (4) |
Также будем полагать, что эти два состояния разделены друг от друга бесконечно малым расстоянием во времени:
| (5) |
Под скоростью будем понимать величину, определенную классическим способом: Если величина зависит от величины , и с течением величина испытывает изменение, то скоростью называется предел отношения приращений величин и :
| (6) |
Ещё одно небольшое отступление нужно сделать для описания и выбора точной модели преобразования Пуанкаре. Дело в том, что пока рассматриваются лишь пространственно-временные преобразования, им в действительности удовлетворяет два различных преобразования:
| (7) |
и
| (8) |
Здесь в первом случае используется скалярно-векторное сопряжение, во втором - скалярно-алгебраическое. Для того, чтобы выявить, в чем они различаются с точки зрения группы Пуанкаре, распишем их операторное представление:
| (9) | ||
| (10) | ||
| (11) | ||
Видно, что эти два оператора отличаются псевдоскалярной частью параметра. В силу того, что её можно вынести из оператора преобразования, оба варианта могут быть представлены как:
| (12) | |
| (13) |
где через обозначен оператор с вынесенной псевдоскалярной составляющей из его параметров:
| (14) |
Таким образом, предстоит сделать выбор между двумя вариантами преобразований: 1) использовать скалярно-векторное сопряжение или 2) использовать скалярно-алгебраическое сопряжение. Выберем вариант 1 с отбрасыванием рассмотрения псевдоскалярной составляющей параметра преобразований в силу того, что пока в наши цели не входит рассмотрение псевдоскалярных преобразований и в силу того, что векторное сопряжение удобнее в силу его линейности.
А именно:
| (15) | |
| (16) |
Поэтому мы можем выполнить дальнейший вывод более наглядно.
В силу того, что величина и её приращение являются скалярами, имеем:
| (17) |
И в случае когда мало, имеем:
| (18) | |
| (19) |
Используя это соотношение для преобразования полуточки, распишем выражение для преобразования точки:
| (20) |
Оставив члены первого порядка малости по :
| (21) |
Используя определение полуточки
получим:
| (22) |
Положив точку функцией величины и сравнив с разложением её в ряд Тейлора в окрестности , получим:
| (23) |
Это выражение и является определением скорости точки , если она движется во времени , испытывая в каждый его момент преобразование Пуанкаре:
| (24) |
Выражение (23) является скалярно-векторно сопряжённым самому себе:
| (25) |
То есть абсолютное приращение точки выполняется несмотря на произвольность величины так, что точка остается сама себе скалярно-векторно сопряжённой.
Отметим также, что в силу свойства точки верно равенство:
| (26) |
Далее...
Придерживаясь модели полной группы Пуанкере, мы должны считать величины и дуальными бикватернионами, имеющими 16 компонент. В силу требования скалярно-векторной сопряжённости самой себе точка часть компонентов имеет нулевыми.
Для понимания дальнейшего вывода представим величины и в виде, явно содержащем разделение на главную и дуальную части:
| (27) |
Здесь индексом обозначены главные части, а индексом - дуальные. Пользуясь введенным обозначением, распишем выражение скорости:
Сгруппировав главные и дуальные части, получим:
| (28) |
Используя это разложение в главных и дуальных частях и задавая различные частные случаи величин , , и , оценим характер вклада в скорость точки отдельных величин и . А также найдём их сопоставление отдельным общеизвестным скоростям.
Случай 1.
Зададим точку как дуальный вектор с единичной главной частью:
| (29) |
а величину как дуальный вектор с нулевой главной частью:
| (30) |
Тогда, используя разложение (29), найдем скорость точки при таком преобразовании:
| (31) |
В силу того, что выбрано условие , имеем:
| (32) |
Таким образом, в приведённых выше условиях величина является линейной скоростью приращения дуальной части . В силу того, что в состав величины входит как полярная, так и дуальная части, то есть:
| (33) |
то в силу свойств функций и , определённых как
| (34) | |
| (35) |
И имеющих свойства сопрягаться:
| (36) | |
| (37) |
Имеем равенство для первого случая:
| (38) |
Или: величина является линейной скоростью изменения вектора .
Случай 2. Выберем величины и такими, что выполняются следующие условия:
| (39) |
Используя выражение (29) с этими условиями, получим:
| (40) |
В силу выбора и свойства (38) имеем:
| (41) |
И, также в силу свойства (38), в выражении скорости остаются члены:
| (42) |
Переведя величины и в векторную запись и раскрыв произведение по правилу произведения кватернионов, получим:
| (43) |
где с помощью скобок [] обозначено традиционное векторное произведение 3-х мерных векторов и .
Или: величина является угловой скоростью вращения вектора .
Таким образом, величины и имеют всем хорошо известные механические кинематические интерпретации.
Целью настоящей работы было дать модель скорости и её иллюстрация в частных случаях. Поэтому полный разбор сочетаний и здесь не рассматривается и автор полагает, что такое рассмотрение должно стать темой отдельной работы, посвящённой именно этому вопросу.
К будущим исследованиям могут быть отнесены: величины и , а также отдельное исследование главной части точки . В данной работе рассматривалась лишь её дуальная составляющая. Но общая модель преобразования Пуанкаре потребовала объединения в одну величину дуальной и главной частей вектора , существенно увеличив его размерность. Автор полагает, что будущие исследования покажут оправданность такого объединения. Кроме того, остаётся совершенно нерассмотренной возможность замены скалярно-векторного сопряжения на скалярно-алгебраическое в преобразовании Пуанкаре и следствия такой замены.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Необходимо выполнить и оформить три лабораторных работы в программе...
Лабораторная, Математическое моделирование
Срок сдачи к 15 янв.
Практические работы
Другое, Транспортная инфраструктура, автомобильное дело, машиностроение, детали машин
Срок сдачи к 18 янв.
Найти какие государственные программы реализуются по теме работы, а также как они перекликаются с исследователями по приложенному файлу
Статья, Муниципальное Госуправление, менеджмент, экономика
Срок сдачи к 16 янв.
Выполнить 3 теста по Технологии продукции общественного питания. М-08210
Тест дистанционно, Общественное питание, кулинария
Срок сдачи к 15 янв.
Патентные исследования по теме студенческой работы «Составы и способы получения пленок из полимерных материалов»
Курсовая, Основы научных исследований и защита информации
Срок сдачи к 23 янв.
Сущность языка, проблема его происхождения
Реферат, Русский язык и культура речи
Срок сдачи к 15 янв.
Методика преподавания дисциплин (модулей) психолого-педагогического профиля
Тест дистанционно, Психология и педагогика
Срок сдачи к 16 янв.
Криминалистика. Ответить на 2 вопроса и одна задача
Решение задач, Юриспруденция
Срок сдачи к 18 янв.
Вам нужно сконструировать представления для решения трех различных...
Решение задач, Анализ и визуализация данных, дизайн, информатика экономика,
Срок сдачи к 15 янв.
Решить 4 задачи по оперативно-розыскному обеспечению национальной безопасности
Решение задач, Юриспруденция
Срок сдачи к 18 янв.
Заполните форму и узнайте цену на индивидуальную работу!