Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Тривимірні перетворення

Тип Реферат
Предмет Математика
Просмотров
1391
Размер файла
171 б
Поделиться

Ознакомительный фрагмент работы:

Тривимірні перетворення

Вступ

Для кращого сприйняття форми об'єкта необхідно мати його зображення в тривимірному просторі. У багатьох випадках наочне представлення про об'єкт можна одержати шляхом виконання операцій обертання і переносу, а також побудови проекцій. Введемо однорідні координати. Точка в тривимірному просторі задається чотиримірним вектором чи . Перетворення з однорідних координат описується співвідношеннями

(4.1)

де T - деяка матриця перетворення.

Ця матриця може бути представлена у вигляді 4 окремих частин

Матриця 3x3 здійснює лінійне перетворення у виді зміни масштабу, зсуву й обертання. Матриця-рядок 1х3 робить перенос, а матриця-стовпець 3х1 - перетворення в перспективі. Останній скалярний елемент виконує загальну зміну масштабу. Повне перетворення, отримане шляхом впливу на вектор положення матрицею 4x4 і нормалізації перетвореного вектора, будемо називати білінійним перетворенням. Воно забезпечує виконання комплексу операцій зсуву, часткової зміни масштабу, обертання, відображення, переносу, а також зміни масштабу зображення в цілому.

Тривимірна зміна масштабу

Діагональні елементи основної матриці перетворення 4х4 здійснюють часткову і повну зміну масштабу. Розглянемо перетворення

,(4.2)

яке робить часткову зміну масштабу. На рис.4.1а показане перетворення паралелепіпеда в одиничний куб шляхом зміни масштабу. Загальна зміна масштабу виходить за рахунок використання четвертого діагонального елемента, тобто

. (4.3)

Це перетворення ілюструє рис.4.1б. Такий же результат можна отримати при рівних коефіцієнтах часткових змін масштабів. У цьому випадку матриця перетворення повинна бути рівна

. (4.4)


Вектори положення точок А і В рівні і .

Рис.4.1. Тривимірні перетворення iз зміною масштабів.


Тривимірний зсув

Недіагональні елементи верхньої лівої підматриці 3х3 від загальної матриці перетворення розміру 4х4 здійснюють зсуви в трьох вимірах, тобто

. (4.5)

Простий тривимірний зсув одиничного куба показаний на рис.4.1в.

Тривимірні обертання

Раніше було показано, що матриця 3х3 забезпечувала комбінацію операцій зміни масштабу і зсуву. Однак, якщо визначник матриці 3х3 дорівнює +1, то має місце чисте обертання навколо початку координат. Перед розглядом загального випадку тривимірного обертання навколо довільної осі дослідимо кілька окремих випадків. При обертанні навколо осі х розміри уздовж осі х не змінюються. Таким чином, матриця перетворень буде мати нулі в першому рядку і першому стовпці, за винятком одиниці на головній діагоналі. Це приводить до матриці перетворення, що відповідає повороту на кут навколо осі х і задається співвідношенням

(4.6)


Обертання вважається додатнім, тобто за годинниковою стрілкою, якщо дивитися з початку координат вздовж осі обертання. На рис.4.2а показаний поворот на -90° навколо осі x.

Для обертання на кут Ф навколо осі y - нулі ставлять у другому рядку і другому стовпці матриці перетворення, за винятком одиниці на головній діагоналі. Повна матриця задається виразом

(4.7)

Рис.4.2. Тривимірні обертання.


На рис.4.2б показаний поворот на 90° навколо осі y. Аналогічно матриця перетворення для обертання на кут навколо осі z має вид

(4.8)

Аналіз визначників для матриць (4.6)-(4.8) показує, що для будь-якої матриці обертання детермінант дорівнює +1.

Тому що обертання описуються множенням матриць, то тривимірні обертання некомутативні, тобто порядок множення буде впливати на кінцевий результат. Для того щоб показати це, розглянемо обертання навколо осі х, за яким слідує обертання на такий же кут навколо осі y. Використовуючи рівняння (4.6) і (4.7) при = Ф, одержимо


Рис.4.3. Некомутативність тривимірних обертань.


(4.9)

Зворотна послідовність дій, тобто обертання навколо осі y і наступне за ним обертання на такий же кут навколо осі x при = Ф дає

(4.10)

На рис.4.3 для лівого верхнього зображення штриховими лініями показані результати двох послідовних обертань, описаних матрицею перетворення (4.9). Зображення, отримане обертаннями, виконаними в іншій послідовності, описаними рівняннями (4.10), показані суцільною лінією. З порівняння отриманих зображень видно, що при зміні порядку обертання виходять різні результати.

Часто буває необхідно обертати зображення навколо однієї з осей декартової системи координат.

Відображення в просторі

Іноді потрібно виконати дзеркальне відображення тривимірного зображення. У трьох вимірах найпростіше відображення здійснюється щодо площини. Для відображення без зміни масштабів необхідно, щоб визначник перетворення дорівнював -1,0. При відображенні щодо площини xy змінюється тільки знак координати z. Отже, матриця перетворення для відображення щодо площини xy має вигляд

(4.11)

Відображення одиничного куба щодо площини ху показане на рис.4.4. Для відображення щодо площини уz

(4.12)


Рис.4.4. Просторове відображення щодо площини xy.

(4.12)

а для відображення щодо площини xz

(4.13)

Відображення щодо інших площин можна одержати шляхом комбінації обертання і відображення.

Просторовий перенос

Тривимірний лінійний перенос зображення задається виразом

(4.14)

Після перемножування одержимо

(4.15)

Тривимірне обертання навколо довільної осі

тривимірне обертання фігура відображення

Метод двовимірного плоского обертання навколо довільної осі був розглянений раніше. Узагальненням цього методу є спосіб обертання навколо довільної осі в тривимірному просторі. Як і для плоского випадку, розглянена процедура полягає в переносі зображення і заданої осі обертання, що забезпечує обертання навколо осі, що проходить через початок координат. Метод тривимірного обертання полягає в лінійному переносі, обертанні навколо початку координат і зворотньому лінійному переносі у вихідне положення. Якщо вісь, навколо якої виконується обертання, проходить через точку А = , то матриця перетворення визначається наступним виразом:


(4.16)

де елементи матриці обертання R розміру 4х4 визначаються в загальному випадку співвідношенням

(4.17)


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач по предмету «Математика»

Решение задач, Математика

Срок сдачи к 29 дек.

1 минуту назад

Отчет с выполнением заданий

Решение задач, Отчет, бух учет

Срок сдачи к 25 дек.

4 минуты назад

Расчет параметров участка электроэнергетической системы

Решение задач, Электрические системы, электроника, электротехника

Срок сдачи к 8 янв.

4 минуты назад
4 минуты назад

Сделать курсач по методике

Курсовая, Электротехника

Срок сдачи к 26 дек.

5 минут назад

Психология безопасности труда

Реферат, Русский язык и культура речи

Срок сдачи к 29 дек.

7 минут назад

Сделать реферат и презентацию

Презентация, Биомеханика

Срок сдачи к 25 дек.

7 минут назад

написать курсовую работу по уголовному праву

Курсовая, Уголовное право

Срок сдачи к 25 дек.

7 минут назад

Начертить 12 чертежей

Чертеж, Начертательная геометрия

Срок сдачи к 9 янв.

8 минут назад

Феномен успеха и успешность в профессиональном развитии

Реферат, Психология

Срок сдачи к 28 дек.

9 минут назад

В файле прикреплен пример выполнения задания

Контрольная, Криминология

Срок сдачи к 27 дек.

9 минут назад

9-11 страниц. правовые основы военной реформы в ссср в 20-е гг

Реферат, История государства и права России

Срок сдачи к 26 дек.

10 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, Английский язык

Срок сдачи к 26 дек.

10 минут назад

Составить Проект массового взрыва

Контрольная, Взрывное дело, горное дело

Срок сдачи к 8 янв.

12 минут назад

Термодинамика

Решение задач, Термодинамика

Срок сдачи к 26 дек.

12 минут назад

Нужен реферат, объем 15-20 страниц

Реферат, Безопасность в техносфере

Срок сдачи к 5 янв.

12 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, История

Срок сдачи к 26 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно