Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Исследование функций

Тип Реферат
Предмет Математика
Просмотров
1629
Размер файла
297 б
Поделиться

Ознакомительный фрагмент работы:

Исследование функций

ВЫСШАЯ МАТЕМАТИКА

ИССЛЕДОВАНИЕ ФУНКЦИЙ


СОДЕРЖАНИЕ

1. Основные теоремы дифференциального исчисления

1.1 Локальные экстремумы функции

1.2 Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа

2. Исследование функций

2.1 Достаточные условия экстремума функции

2.2 Исследование функций на выпуклость и вогнутость. Точка перегиба

2.3 Асимптоты графика функции

2.4 Общая схема построения графика функции

Литература


1. ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ

1.1 Локальные экстремумы функции

Пусть задана функция у = f (х) на множестве Х и х0 – внутренняя точка множества Х.

Обозначим через U(х0) окрестность точки х0. В точке х0 функция f(х) имеет локальный максимум, если существует такая окрестность U(х0) точки х0, что для всех х из этой окрестности выполнено условие f(х) £f(х0).

Аналогично: функция f(х) имеет в точке х0локальный минимум, если существует такая окрестность U(х0) точки х0, что для всех х из этой окрестности выполнено условие f(х) ³f(х0).

Точки локальных максимума и минимума называются точками локальных экстремумов, а значения функции в них – локальными экстремумами функции.

Пусть функция f(х) определена на отрезке [а, b] и имеет локальный экстремум на каком-то из концов этого отрезка. Тогда такой экстремум называется локальным односторонним или краевым экстремумом. В этом случае соответствующая окрестность является правой для «а» и левой для «b» полуокрестностью.

Проиллюстрируем данные выше определения:

На рисунке точки х1, х3 – точки локального минимума, точки х2, х4 – точки локального максимума, х = а – краевого максимума, х = b – краевого минимума.

Заметим, что наряду с локальными минимумом и максимумом определяют так называемые глобальные минимумы и максимумы функции f(х) на отрезке [a, b]. На рисунке точка х = а – точка глобального максимума (в этой точке функция f(х) принимает наибольшее значение на отрезке [a, b]), точка х = х3 – точка соответственно глобального минимума.

1.2 Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа

Рассмотрим некоторые теоремы, которые позволят в дальнейшем проводить исследование поведения функций. Они носят названия основных теорем математического анализа или основных теорем дифференциального исчисления, поскольку указывают на взаимосвязь производной функции в точке и ее поведения в этой точке. Рассмотрим теорему Ферма.

Пьер Ферма (1601–1665) – французский математик. По профессии – юрист. Математикой занимался в свободное время. Ферма – один из создателей теории чисел. С его именем связаны две теоремы: великая теорема Ферма (для любого натурального числа n > 2 уравнение хn + yn = zn не имеет решений в целых положительных числах х, у, z) и малая теорема Ферма (если р – простое число и а – целое число, не делящееся на р, то а р-1 – 1 делится на р).

Теорема Ферма. Пусть функция f(х) определена на интервале (а, b) и в некоторой точке х0Î (а, b) имеет локальный экстремум. Тогда, если в точке х0 существует конечная производная f'(x0), то f'(x0) = 0.

Доказательство.

Пусть, для определенности, в точке х0 функция имеет локальный минимум, то есть f(х) ³f(х0), œх ÎU(х0). Тогда в силу дифференцируемости

f(х) в точке х0 получим:

при х > х0:

при х < х0:

Следовательно, эти неравенства в силу дифференцируемости имеют место одновременно лишь когда

Теорема доказана.

Геометрический смысл теоремы Ферма: если х0Î (а, b) является точкой минимума или максимума функции f(х)и в этой точке существует производная функции, то касательная, проведенная к графику функции в точке (х0, f(х0)), параллельна оси Ох:


Заметим, что оба условия теоремы Ферма – интервал (а, b) и дифференцируемость функции в точке локального экстремума – обязательны.

Пример 1. у = çх÷, х Î (–1; 1).

В точке х0 = 0 функция имеет минимум, но в этой точке производная не существует. Следовательно, теорема Ферма для данной функции неверна (не выполняется условие дифференцируемости функции в точке х0).

Пример 2. у = х3, х Î [–1; 1].

В точке х0 = 1 функция имеет краевой максимум. Теорема Ферма не выполняется, так как точка х0 = 1 Ï (–1; 1).


Мишель Ролль (1652–1719) – французский математик, член Парижской академии наук. Разработал метод отделения действительных корней алгебраических уравнений.

Теорема Ролля. Пусть функция f(x) непрерывна на отрезке [а, b], дифференцируема на (а, b), f(а) = f(b). Тогда существует хотя бы одна точка x, а < x < b, такая, что f'(x) = 0.

Доказательство:

1) если f(x) = const на [a, b], то f'(х) = 0, œх Î (a, b);

2) если f(x) ¹const на [a, b], то непрерывная на [a, b] функция достигает наибольшего и наименьшего значений в некоторых точках отрезка

[a, b]. Следовательно, maxf(x)или minf(x) обязательно достигается во внутренней точке x отрезка [a, b], а по теореме Ферма имеем, что f'(x) = 0.

Теорема доказана.

Геометрический смысл теоремы Ролля: при выполнении условий теоремы внутри отрезка [a, b] обязательно найдется хотя бы одна точка x, такая, что касательная к графику f(x) в точке (x, f(x)) ïïOx (см. рисунок).

Заметим, что все условия теоремы существенны.

Пример 3.f(x) = çх÷, х Î [-1; 1]. f(-1) = f(1) = 1.

В точке х = 0 нарушено условие дифференцируемости. Следовательно, теорема Ролля не применяется – ни в одной точке отрезка [–1; 1] производная в нуль не обращается.

Пример 4.

Для данной функции f(0) = f(1) = 0, но ни в одной точке интервала

(0; 1) производная не равна 0, так как теорема Ролля не выполняется – функция не является непрерывной на [0; 1].

Огюстен Коши (1789–1857) – французский математик, член Парижской академии наук, почетный член Петербургской и многих других академий. Труды Коши относятся к математическому анализу, дифференциальным уравнениям, алгебре, геометрии и другим математическим наукам.

Теорема Коши. Пусть функции f(х) и g(х) непрерывны на отрезке

[a, b] и дифференцируемы на интервале (a, b), причем g'(х) ¹ 0, œх Î (a, b). Тогда на (a, b) найдется точка x, такая, что

. (1)

Доказательство.

Рассмотрим вспомогательную функцию Функция F(х) непрерывна на [a, b], дифференцируема на (a, b), причем F(а) = F(b) = 0. Следовательно, по теореме Ролля на (a, b) существует точка x, такая, что F'(x) = 0:

Следовательно:

.

Теорема доказана.

Жозеф Луи Лагранж (1736–1813) – французский математик и механик, почетный член Парижской и Петербургской академий. Ему принадлежат выдающиеся исследования по математическому анализу, по различным вопросам дифференциальных уравнений, по алгебре и теории чисел, механике, астрономии. Лагранж впервые ввел в рассмотрение тройные интегралы, предложил обозначения для производной (y', f'(x)).

Теорема Лагранжа. Пусть функция f(х) непрерывна на [a, b], дифференцируема на интервале (a, b). Тогда на (a, b) найдется точка x, такая, что

(2)

Доказательство.

Из формулы (1) при g(x) = xполучаем формулу (2).

Теорема доказана.

Равенство (2) называют формулой конечных приращений или формулой Лагранжа о среднем.

Геометрический смысл теоремы Лагранжа.

При выполнении условий теоремы внутри отрезка [a, b] обязательно найдется хотя бы одна точка x, такая, что касательная к графику функции f(x) в точке (x, f(x)) параллельна секущей, проходящей через точки А (а, f(а)) и В (b, f(b)) (см. рисунок).

Рассмотрим следствия из теоремы Лагранжа:

1. (условие постоянства функции на отрезке). Пусть функция f(x) непрерывна на [a, b], дифференцируема на (a, b). Если f'(x) = 0, œх Î (a, b), то функция f(x) постоянна на [a, b].


2. Пусть функции f(x) и g(х) непрерывны на отрезке [a, b], дифференцируемы на интервале (a, b), f'(x) = g'(х), œх Î (a, b). Тогда f(x) = g(х) + С, где С = const.

3. (условие монотонности функции). Пусть функция f(x) непрерывна на отрезке [a, b], дифференцируемая на интервале (a, b). Тогда, если f'(x) > 0,œх Î (a, b), то f(x) строго монотонно возрастает на (a, b). Если же f'(x) < 0,

œх Î (a, b), то f(x) строго монотонно убывает на (a, b).


2. ИССЛЕДОВАНИЕ ФУНКЦИЙ

2.1 Достаточные условия экстремума функции

В лекции 1 мы рассмотрели основные теоремы математического анализа, которые широко используются при исследовании функции, построении ее графика.

По теореме Ферма: из дифференцируемости функции f(x) в точке локального экстремума х0 следует, что f'(x0) = 0. Данное условие является необходимым условием существования в точке локального экстремума, то есть если в точке х0 – экстремум функции f(x) и в этой точке существует производная, то f'(x0) = 0. Точки х0, в которых f'(x0) = 0, называются стационарными точками функции. Заметим, что равенство нулю производной

в точке не является достаточным для существования локального экстремума в этой точке.

Пример 1. у = х3, у' = 3х2, у'(0) = 0, но

в точке х0 = 0 нет экстремума.

Точками, подозрительными на экстремум функции f(x) на интервале (a, b), являются точки, в которых производная существует и равна 0 либо она не существует или равна бесконечности. На рисунках функции имеют минимум в точке х0 = 0:

f'(0) = 0 f'(0) $f'(0) = ¥

Рассмотрим достаточные условия существования в точке локального экстремума, которые позволят ответить на вопрос: «Есть ли в точке экстремум и какой именно – минимум или максимум?».

Теорема 1 (первое достаточное условие экстремума). Пусть непрерывная функция f(x) дифференцируема в некоторой проколотой окрестности U(x0) точки х0 (проколотая окрестность означает, что сама точка х0 выбрасывается из окрестности) и непрерывна в точке х0. Тогда:

1) если (1)

то в точке х0 – локальный максимум;

2) если (2)

то в точке х0 – локальный минимум.

Доказательство.

Из неравенств (1) и следствия 3 теоремы Лагранжа (о монотонности функции) следует, что при х < х0 функция не убывает, а при х > х0 функция не возрастает, то есть

(3)

Следовательно, из (3) получаем, что в точке х0 функция имеет локальный максимум.

Аналогично можно рассмотреть неравенства (2) для локального минимума:


f (x) f (x)

f'(х) ³ 0 f'(х) £ 0 f'(х) £ 0 f'(х) ³ 0

Теорема доказана.

Пример 2. Исследовать на монотонность и локальный экстремум функцию с помощью производной первого порядка.

Решение. Найдем стационарные точки функции:

Þ х2 –1 = 0 Þ х1 = –1, х2 = 1.

Заметим, что данная функция не определена в точке х = 0. Следовательно:

х(–¥; –1)–1(–1; 0)0(0; 1)1(1; +¥)
у'+00+
у–22

max min

То есть функция возрастает на интервалах (–¥; –1) и (1; +¥), убывает на интервалах (–1; 0), (0; 1), имеет локальный максимум в точке

х1 = –1, равный уmax (–1) = –2; имеет локальный минимум в точке х2 = 1,

уmin (1) = 2.

Теорема 2 (второе достаточное условие экстремума). Пусть функция f(x) дважды непрерывно-дифференцируема. Если х0 – стационарная точка

(f'(х0) = 0), в которой f''(х0) > 0, то в точке х0 функция имеет локальный минимум. Если же f''(х0) < 0, то в точке х0 функция имеет локальный максимум.

Доказательство. Пусть для определенности f''(х0) > 0. Тогда

Следовательно:

при х< х0, f'(х) < 0,

при х> х0, f'(х) > 0.

Поэтому по теореме 1 в точке х0 функция имеет локальный минимум.

Теорема доказана.

Пример 3. Исследовать на экстремум функцию с помощью второй производной.

Решение. В примере 2 для данной функции мы нашли первую производную и стационарные точки х1 = –1, х2 = 1.

Найдем вторую производную данной функции:

Найдем значения второй производной в стационарных точках.

Þ в точке х1 = –1 функция имеет локальный максимум;

Þ в точке х2 = 1 функция имеет локальный минимум (по теореме 2).

Заметим, что теорема 1 более универсальна. Теорема 2 позволяет проанализировать на экстремум лишь точки, в которых первая производная равна нулю, в то время как теорема 1 рассматривает три случая: равенство производной нулю, производная не существует, равна бесконечности в подозрительных на экстремум точках.

2.2 Исследование функций на выпуклость и вогнутость. Точка перегиба

Пусть функция f(х) задана на интервале (a, b) и х1, х2 – любые различные точки этого интервала. Через точки А (х1, f(х1)) и В (х2, f(х2)) графика функции f(х) проведем прямую, отрезок АВ которой называется хордой. Уравнение этой прямой запишем в виде у = у(х).

Функция f(х) называется выпуклой вниз на интервале (a, b), если для любых точек х1, х2Î (a, b), а £ х1 < х2£b, хорда АВ лежит не ниже графика этой функции, т. е. если f(х) £ у (х), œ х Î[х1, х2] Ì (a, b):


Заметим, что выпуклую вниз функцию иногда называют вогнутой функцией. Аналогично определяется выпуклость функции вверх.

Функция f(х) называется выпуклой вверх на интервале (a, b), если для любых точек х1, х2Î (a, b), а £ х1 < х2£b, хорда АВ лежит не выше графика этой функции, т. е. если f(х) ³ у (х), œ х Î[х1, х2] Ì (a, b):

Теорема 3 (достаточное условие выпуклости). Если f(х) – дважды непрерывно дифференцируема на интервале (a, b) и

1) f''(х) > 0, œ х Î(a, b), то на (a, b) функция f(х) выпукла вниз;

2) f''(х) < 0, œ х Î(a, b), то на (a, b) функция f(х) выпукла вверх.

Точка х0 называется точкой перегиба функцииf(х), если $d – окрест-ность точки х0, что для всех х Î (х0 – d, х0) график функции находится с одной стороны касательной, а для всех х Î (х0, х0 + d) – с другой стороны каса-тельной,проведенной к графику функции f(х) в точке х0, то есть точка х0 – точка перегиба функции f(х), если при переходе через точку х0 функция f(х) меняет характер выпуклости:


х0 – d х0 х0 + d

Теорема 4 (необходимое условие существования точки перегиба). Если функция f(х) имеет непрерывную в точке х0 производную f'' и х0 – точка перегиба, то f'' (х0) = 0.

Доказательство.

Если бы f'' (х0) < 0 или f'' (х0) > 0, то по теореме 3 в точке х0 функция f(х) была бы выпукла вверх или вниз. Следовательно, f''(х0) = 0.

Теорема доказана.

Теорема 5 (достаточное условие перегиба). Если функция f(х) дважды непрерывно дифференцируема в окрестности точки х0 и при переходе через точку х0 производная f''(х) меняет знак, то точка х0 является точкой перегиба функции f(х).

Пример 4. Исследовать на выпуклость и найти точки перегиба функции у = х3.

Решение. у' = 3х2, у'' = 6х = 0 Þ х0 = 0 – точка, подозрительная на перегиб.

В точке х0 = 0 функция у = х3 имеет перегиб:

х(–¥; 0)0(0; +¥)
у''0+
увыпукла вверх0выпукла вниз
точка перегиба

Пример 5. Исследовать на выпуклость и найти точки перегиба функции .

Решение. В примере 3 мы уже находили вторую производную данной функции . Так как то точек подозрительных на перегиб нет. Рассмотрим промежутки выпуклости:

х(–¥; 0)0(0; +¥)
у''+
увыпукла вверхвыпукла вниз
функция не определена

2.3 Асимптоты графика функции

Асимптотой будем называть прямую, к которой график функции неограниченно близко приближается. Различают вертикальные и наклонные асимптоты.

Прямая х = х0 называется вертикальной асимптотой графика функции f(х), если хотя бы один из пределов f(х0 – 0) или f(х0 + 0) равен бесконечности.

Пример 6. Найти вертикальные асимптоты функций:


а) б) в)

Решение. Вертикальными асимптотами функций будут прямые х = х0, где х0 – точки, в которых функция не определена.

а) х = 3 – вертикальная асимптота функции . Действительно, ;

б) х = 2, х = –4 – вертикальные асимптоты функции . Действительно,

,

;

в) х = 0 – вертикальная асимптота функции Действительно, .

Прямая у = kx + b называется наклонной асимптотой графика непрерывной функции f(х) при х ® +¥ или х ® –¥, если f(х) = kx + b + α(х), , то есть если наклонная асимптота для графика функции f(х) существует, то разность ординат функции f(х) и прямой у = kx + b в точке х стремится к 0 при х ® +¥ или при х ® –¥.

Теорема 6. Для того чтобы прямая у = kx + b являлась наклонной асимптотой графика функции f(х) при х ® +¥ или х ® –¥, необходимо и достаточно существование конечных пределов:


(4)

Следовательно, если хотя бы один из данных пределов не существует или равен бесконечности, то функция не имеет наклонных асимптот.

Пример 7. Найти наклонные асимптоты функции

Решение. Найдем пределы (4):

Следовательно, k = 1.

Следовательно, b = 0.

Таким образом, функция имеет наклонную асимптоту

у = kx + b = 1 · х + 0 = х.

Ответ: у = х – наклонная асимптота.

Пример 8. Найти асимптоты функции .

Решение.

а) функция неопределенна в точках х1 = –1, х2 = 1. Следовательно, прямые х1 = –1, х2 = 1 – вертикальные асимптоты данной функции.

Действительно, .


;

б) у = kx + b.

Следовательно, у = 2х + 1 – наклонная асимптота данной функции.

Ответ: х1 = –1, х2 = 1 – вертикальные, у = 2х + 1 – наклонная асимп-

тоты.

2.4 Общая схема построения графика функции

1. Находим область определения функции.

2. Исследуем функцию на периодичность, четность или нечетность.

3. Исследуем функцию на монотонность и экстремум.

4. Находим промежутки выпуклости и точки перегиба.

5. Находим асимптоты графика функции.

6. Находим точки пересечения графика функции с осями координат.

7. Строим график.

Прежде чем перейти к примерам, напомним определения четности и нечетности функции.

Функция у = f(х) называется четной, если для любого значения х, взятого из области определения функции, значение (–х) также принад-лежит области определения и выполняется равенство f(х) = f(–х). График четной функции симметричен относительно оси ординат.

Функция у = f(х) называется нечетной для любого значения х, взятого из области определения функции, значение (–х) также принадлежит об-ласти определения, и выполняется равенство f(–х) = –f(х). График не-четной функции симметричен относительно начала координат.

Пример 9. Построить график .

Решение. Мы используем данные, полученные для этой функции в других примерах.

1. D(у) = (–¥; 0) È (0; +¥).

2. Следовательно, функция нечетная. Ее график будет симметричен относительно начала координат.

3. (см. пример 2). Исследуем функцию на монотонность и экстремум:

х(–¥; –1)–1(–1; 0)0(0; 1)1(1; +¥)
у'+00+
у–22

max min

4. (см. пример 5). Исследуем функцию на выпуклость и найдем точки перегиба.

х(–¥; 0)0(0; +¥)
у''+
увыпукла вверхвыпукла вниз
функция не определена

Несмотря на то, что функция поменяла характер выпуклости при переходе через точку х = 0, но в ней нет перегиба, так как в этой точке функция не определена.

5. (см. примеры 6 и 7). Найдем асимптоты функции:

а) х = 0 – вертикальная асимптота;

б) у = х – наклонная асимптота.

6. Точек пересечения с осями координат у данной функции нет, так как , при любых х Îú, а х = 0 ÏD(у).

7. По полученным данным строим график функции:

Пример 10. Построить график функции .

Решение.

1. D(у) = (–¥; –1) È (–1; 1) È (1; +¥).

2. – функция нечетная. Следовательно, график функции будет симметричен относительно начала координат.

3. Исследуем функцию на монотонность и экстремум:

2 – х4 = 0, х2 · (3 – х2) = 0, х1 = 0, х2 = , х3 = .

х(–¥;)(; 0)–1(–1; 0)0(0; 1)1(1; )(; +¥)
у'0++0++0
у2,60–2,6

4. Исследуем функцию на выпуклость и точки перегиба:

х = 0 – точка, подозрительная на перегиб.

х(–¥; –1)–1(–1; 0)0(0; 1)1(0; +¥)
у''+0+
у

выпукла

вниз

выпукла

вверх

0выпукла вниз

выпукла

вниз

перегиб

5. Найдем асимптоты функции:

а) х = –1, х = 1 – вертикальные асимптоты.

Действительно:


б) у = kx + b.

,

Þ у = –1х + 0 = – х – наклонная асимптота.

6. Найдем точки пересечения с осями координат:

х = 0 Þ у = 0 Þ (0; 0) – точка пересечения с осями координат.

7. Строим график:


ЛИТЕРАТУРА

1. Гусак А. А. Математический анализ и дифференциальные уравнения.– Мн.: Тетрасистемс, 1998. – 415 с.

2. Минченков Ю. В. Высшая математика. Производная функции. Дифференциал функции: Учебно-методическое пособие.– Мн.: ЧИУиП, 2007.– 20 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star
Красноярский государственный аграрный университет
Все сделано хорошо, а самое главное быстро, какие либо замечания отсутствуют
star star star star star
РЭУ им. Г. В. Плеханова
Алексей пошел на встречу, и сделал работу максимально быстро и качественно! Огромное спасибо!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно