Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Пределы Сравнение бесконечно малых величин

Тип Реферат
Предмет Математика
Просмотров
779
Размер файла
400 б
Поделиться

Ознакомительный фрагмент работы:

Пределы Сравнение бесконечно малых величин

Контрольная работа

Дисциплина: Высшая математика

Тема: Пределы. Сравнение бесконечно малых величин

Содержание

1. Предел числовой последовательности

2. Предел функции

3. Второй замечательный предел

4. Сравнение бесконечно малых величин

Литература

1. Предел числовой последовательности

Решение многих математических и прикладных задач приводит к последовательности чисел, заданных определенным образом. Выясним некоторые их свойства.

Определение 1.1. Если каждому натуральному числу по какому-то закону поставлено в соответствие вещественное число , то множество чисел называется числовой последовательностью.

Исходя из определения 1, видно, что числовая последовательность всегда содержит бесконечное число элементов. Изучение различных числовых последовательностей показывает, что с ростом номера их члены ведут себя по-разному. Они могут неограниченно увеличиваться или уменьшаться, могут постоянно приближаться к какому-то числу или вообще не проявлять какой-либо закономерности.

Определение 1.2. Число называется пределом числовой последовательности , если для любого числа существует такой номер числовой последовательности , зависящий от , что для всех номеров числовой последовательности выполняется условие .

Последовательность, которая имеет предел, называется сходящейся. В этом случае пишут .

Очевидно, для выяснения вопроса о сходимости числовой последовательности необходимо иметь критерий, который был бы основан только на свойствах ее элементов.

Теорема 1.1. (теорема Коши о сходимости числовой последовательности). Для того, чтобы числовая последовательность была сходящейся, необходимо и достаточно, чтобы для любого числа существовал такой номер числовой последовательности , зависящий от , что для любых двух номеров числовой последовательности и , которые удовлетворяют условию и , было бы справедливо неравенство .

Доказательство. Необходимость. Дано, что числовая последовательность сходится, значит, в соответствии с определением 2, у нее существует предел . Выберем какое-то число . Тогда, по определению предела числовой последовательности, существует такой ее номер , что для всех номеров выполняется неравенство . Но так как произвольно, то будет выполняться и . Возьмем два каких-то номера последовательности и , тогда

.

Отсюда следует, что , то есть необходимость доказана.

Достаточность. Дано, что . Значит, существует такой номер , что для данного условия и . В частности, если , а , то или при условии, что . Это значит, что числовая последовательность для ограничена. Следовательно, по крайней мере, одна из ее подпоследовательностей должна сходиться. Пусть . Докажем, что сходится к также.

Возьмем произвольное . Тогда, согласно определению предела, существует такой номер , что для всех выполняется неравенство . С другой стороны, по условию дано, что у последовательности существует такой номер , что для всех и будет выполняться условие .

Выберем и зафиксируем некоторое . Тогда для всех получим:

.

Отсюда следует, что , что и требовалось доказать.

Определение 1.3. Числовая последовательность называется монотонно возрастающей, если выполняется неравенство , и монотонно убывающей, если .

Теорема 1.2. Любая монотонно возрастающая ограниченная сверху числовая последовательность имеет предел.

Аналогичная теорема есть и для монотонно убывающей числовой последовательности.

2. Предел функции

При исследовании графиков различных функций можно видеть, что при неограниченном стремлении аргумента функции к какой-то величине, то ли конечной, то ли бесконечной, сама функция также может принимать ряд значений, неограниченно приближающихся к некоторой величине. Следовательно, для функции также можно ввести понятие предела.

Определение 2.1. Число называется пределом функции в точке , если для любого существует такое число , что из условия следует, что .

Данное условие записывается в виде: . Отметим, что интервал длины , который содержит в себе точку , называется -окрестностью точки .

Аналогичным образом вводится понятие предела функции и при стремлении к . Так же как и в случае числовой последовательности, для функции существует теорема Коши, которая определяет существование у нее предела.

Теорема Коши о существовании предела. Для того чтобы функция , где , имела предел при , где , необходимо и достаточно, чтобы для любого существовало такое число , что из условия вытекало условие .

Доказательства теоремы приводить не будем. В качестве предела функции могут служить как конечные, так и бесконечные величины.

Геометрический смысл теоремы Коши заключается в следующем. Возьмем некоторое , для которого . Тогда, согласно теореме, . Представим данное неравенство следующим образом: . Иначе говоря, как только станет отличаться от меньше, чем на , сама функция окажется в полосе шириной , расположенной на линии .

Y

X

В приведенном определении предела и теореме Коши может стремиться к произвольным образом. Однако во многих случаях это стремление происходит с какой-то одной стороны. Для этого вводятся понятия односторонних пределов.

Определение 2.2. Если стремится к , оставаясь все время меньше его, и при этом стремится к , то это число называется пределом функции слева и обозначается .

Определение 2.3. Если стремится к , оставаясь все время больше его, и при этом стремится к , то это число называется пределом функции справа и обозначается .

Необходимо иметь в виду, что не всегда пределы слева и справа в точке равны между собой.

3. Второй замечательный предел

Рассмотрим числовую последовательность , где , С ростом основание степени уменьшается до единицы, а показатель растет до бесконечности, поэтому ничего конкретного о поведении сказать нельзя. Для вычисления воспользуемся выражением для бинома Ньютона:

.

В нашем случае

.

Из полученного выражения следует, что с увеличением величина растет. Действительно, перейдем от к . Это приведет к тому, что число слагаемых возрастет на одно. Кроме того, величина множителей, заключенных в скобки, тоже возрастет, так как . Но если увеличивается число слагаемых и сами слагаемые растут, то . Значит, числовая последовательность монотонно возрастает.

Докажем теперь, что данная последовательность ограничена сверху. Заменим все скобки вида единицей. Так как , то

.

Кроме того , ,..., . Значит,

.

В правой части неравенства после цифры 2 стоит убывающая геометрическая прогрессия. Как известно, сумма первых членов такой прогрессии равна: . В нашем случае . С ростом величина будет, очевидно, стремится к единице. Значит, , то есть, ограничено сверху.

Итак, мы получили, что . Но так как монотонно возрастающая последовательность ограниченная сверху, то она имеет предел:

Можно доказать, что данный предел справедлив не только для натуральных чисел, но и для любых значений :

.

Полученное выражение и называется вторым замечательным пределом.

Число используется для введения натуральных логарифмов. Такие логарифмы обозначаются , при этом .

Следствие 3.1.

.

В частности, если , то .

Следствие 3.2.

.

В частности, если , то .

4. Сравнение бесконечно малых величин

Как следует из определения бесконечно малых величин, все они стремятся к нулю, но скорость этого стремления может быть различна. Поэтому все бесконечно малые величины можно сравнивать между собой.

Пусть даны две бесконечно малые величины и при , то есть , .

Определение 4.1. Функции и называются бесконечно малыми величинами одного порядка малости, если .

Определение 4.4. Функция называется бесконечно малой величиной более высокого порядка малости, чем , если .

Определение 4.3. Функция называется бесконечно малой величиной более низкого порядка малости, чем , если .

Тот факт, что , например, имеет более высокий порядок малости, чем , можно обозначить следующим образом: .

Определение 4.4. Функция называется бесконечно малой величиной го порядка малости относительно , если .

Определение 4.5. Функции и называются несравнимыми бесконечно малыми величинами, если не существует и не равен .

Определение 4.6. Две бесконечно малые величины и называются эквивалентными, если .

Очевидно, что это частный случай бесконечно малых величин одного порядка малости. Эквивалентные величины обозначаются следующим образом: .

Понятие эквивалентности имеет практическое приложение. Если, то это значит, что при достаточном приближении к на основании теоремы 9.4.1 можно написать: . Иначе говоря, или .

Полученный результат позволяет следствия первого и второго замечательных пределов представить следующим образом:

;

;

;

;

;

при .

Данный факт значительно облегчает вычисление пределов, связанных с первым и вторым замечательными пределами. Докажем объясняющую это теорему.

Теорема 4.1. Предел отношения двух бесконечно малых величин равен пределу отношения эквивалентных им величин.

Доказательство. Пусть даны две бесконечно малые величины и при , причем и . Рассмотрим

,

что и требовалось доказать.

Следовательно, при вычислении пределов, используя замены сомножителей на эквивалентные им более простые величины, можно значительно упрощать выражения.

Рассмотрим теперь теорему, дающую достаточно простой признак эквивалентности бесконечно малых величин.

Теорема 4.4. Две бесконечно малые величины и при эквивалентны тогда и только тогда, когда их разность есть бесконечно малая величина более высокого порядка малости, чем и .

Доказательство. Обозначим .

Необходимость. Дано, что . Рассмотрим

,

то есть . Аналогично доказывается, что .

Достаточность. Дано, что и . Рассмотрим

,

то есть , что и требовалось доказать.

Рассмотрим еще одну теорему, облегчающую процесс вычисления пределов.

Теорема 4.3. Сумма конечного числа бесконечно малых величин разных порядков малости эквивалентна слагаемому с самым низким порядком малости.

Доказательство. Пусть даны бесконечно малые величины , и при , причем , , . Обозначим . Тогда

,

то есть , что и требовалось доказать.


Литература

1. Лобоцкая Н.Л. Основы высшей математики. Минск, "Высшая школа", 1973.

2. Минорский В.П. Сборник задач по высшей математики.

3. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М., "Наука", 1986.

4. Гмурман В.Е. Теория вероятностей и математическая статистика. М., "Высшая школа" изд. 5, 1977.

5. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М., "Высшая школа" изд. 2.

6. Баврин И.И. Высшая математика - 1980 г.3

7. Дж. Голуб, Ч.Ван Лоун Матричные вычисления. — М.: Мир, 1999.

8. Беллман Р. Введение в теорию матриц. — М.: Мир, 1969.

9. Гантмахер Ф. Р. Теория матриц (2-е издание). — М.: Наука, 1966.

10.Ланкастер П. Теория матриц. — М.: Наука, 1973.

11.Соколов Н. П. Пространственные матрицы и их приложения. — М.: ГИФМЛ, 1960.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star
Красноярский государственный аграрный университет
Все сделано хорошо, а самое главное быстро, какие либо замечания отсутствуют
star star star star star
РЭУ им. Г. В. Плеханова
Алексей пошел на встречу, и сделал работу максимально быстро и качественно! Огромное спасибо!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно