Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку

Тип Реферат
Предмет Математика
Просмотров
1999
Размер файла
195 б
Поделиться

Ознакомительный фрагмент работы:

Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку

Реферат на тему:

Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку.

1. Властивості лінійного диференціального оператору.

Лінійним диференціальним рівнянням називається рівняння вигляду

(5.1)

де Pi(x), i =1,2,…, n , f(x) – задані функції, неперервні на (a,b).

При цих умовах диференціальне рівняння (5.1) має єдиний розв’язок

y=y(x), який задовільняє початковим умовам .

Цей розв’язок визначений і n раз неперервно диференційований на (a,b).

Особливих розв’язків диференціальне рівняння (5.1) не має. Будь-який розв’язок являється частинним. Якщо при стоїть , то точки, в яких =0, називаються особливими.

Якщо f(x)=0, то диференціальне рівняння (5.1) називають однорідним

(5.2)

Для скорочення запису введемо лінійний диференціальний оператор

(5.3)

Властивості оператора L :

a) L (xy)=k *L (y), k = const;

b) L ()=L () + L ();

c) L.

Використовуючи оператор L диференціального рівняння (5.1) і (5.2) перепишемо у вигляді L (y) = f (x), L (y) = 0 .

Означення 5.1. Функція y = y (x) називається розв’язком диференціального рівняння (5.1), якщо L (y) f (x) (для диференціального рівняння (5.2)

L (y(x)) 0).

Лінійне диференціальне рівняння (5.1) залишається бути лінійним при будь-якій заміні незалежної змінної .

Лінійне диференціальне рівняння (5.1) залишається бути лінійним при будь-якій лінійній заміні шуканої функції . (5.4)

2. Властивості розв’язків лінійного однорідного диференціального рівняння n–го порядку.

Наша задача полягає в тому, щоб знайти всі дійсні розв’язки диференціального рівняння (5.5)

Для розв’язування такої задачі доцільно знайти деякі комплексні розв’язки.

Означення 5.2 Функцію z(x) = w(x) + iv(x), де w(x),v(x) дійсні функції, будемо називати комплексною функцією від дійсної змінної х (w(x) – дійсна частина, v(x) – уявна частина).

Приклад 5.1. Показати справедливість формул , . (5.6)

Формули (5.6) доводяться виходячи з розкладу відповідних множників b раз.

Похідна n-го порядку від z (x) дорівнює . (5.7)

Приведемо формули для обчислення похідної :

а) ; (5.8)

Дійсно

б) Для дійсного к і будь-якого справедлива формула

; (5.9)

в) Використовуючи (5.9) можна показати , (5.10)

де - поліноми степеня n ;

г) При будь-якому (дійсному або комплексному) справедлива формула

. (5.11)

Формула (5.11) доводиться шляхом представлення і використання формули (5.8).

Означення 5.3. Комплексна функція y (x) = (x) + i(x) (5.12) називається розв’язком однорідного диференціального рівняння (5.5); якщо

L (y(x)) 0, a < x < b.

Комплексний розв’язок (5.12) утворює два дійсних розв’язки (x), (x).

Дійсно L (y(x)) = L ((x) + i(x)) = L((x)) + iL((x)) = 0 .

Звідки L((x)) = 0, L((x)) = 0.

Властивості розв’язків лінійного однорідного диференціального рівняння (5.5).

а) Якщо (x) – розв’язок , тобто L() 0, то y=c(x), де с – довільна константа , теж розв’язок диференціального рівняння (5.5)

L(с) = сL() = 0.

б) Якщо (x), (x) - розв’язки диференціального рівняння (5.5) , то

у= (x)+(x) теж розв’язок . Дійсно L (+) = L ()+L () = 0.

в) Якщо (x), (x), ... , ) - розв’язки диференціального рівняння (5.5), то їх лінійна комбінація також являється розв’язком

L= 0.

Приклад 5.2. Записати двохпараметричне сімейство розв’язків.

, =cos(x), =sin(x) - розв’язки, тоді y = ccos(x)+csin(x) - розв’язок .

3. Необхідні і достатні умови лінійної незалежності n-розв’язків лінійного однорідного диференціального рівняння n – го порядку.

Означення 5.4. Функції (x), (x), ... , називаються лінійно незалежними на (a,b) , якщо між не існує співвідношення виду

(x) + (x) + ... + 0 , a < x < b , (5.13)

де , ... , - постійні числа не рівні нулю одночасно . В противному випадку функції (x), (x), ... , називають лінійно залежними на (a,b).

Для двох функцій поняття лінійної незалежності на (a,b) зводиться до того, щоб відношення функцій , не було постійним на (a,b).

Зауваження 5.1. Якщо одна із функцій на (a,b) тотожньо дорівнює нулю, то ці функції лінійно залежні.

Приклад 5.3. Функції =1, =x, ... , - лінійно незалежні на будь-якому інтервалі (a,b) . Дійсно співвідношення

+x + ... +x=0 , в якому не всі дорівнюють нулю, не може виконуватися для будь-яких x , так як рівняння (n-1) – го степеня має не більше (n-1) – го коренів.

Приклад 5.4. Функції , - лінійно незалежні, так як співвідношення , де не рівні одночасно нулю, виконуються не більше ніж в одній точці. Це випливає з =.

Приклад 5.5. Функції =sinx , =cosx , =1 – лінійно залежні на , так як для будь-якого х справджується співвідношення

sinx + cosx – 1 = 0 .

Розглянемо необхідні умови лінійної залежності n - функцій .

Теорема 5.1. Якщо функції (x), (x), ... , - лінійно залежні на (a,b) , то їх вронскіан W (x) тотожньо дорівнює нулю на (a,b) . Тут

W (x) = (5.14)

Доведення. Згідно умови теореми

(x) + (x) + ... + 0 , a < x < b , де не всі одночасно рівні нулю . Нехай , тоді

(5.15)

Диференціюємо (5.15) (n-1)-раз і підставляємо в (5.14)

W (x) =(5.16)

Розкладаючи визначник (5.16) на суму визначників, будемо мати в кожному з них два однакові стовпці, тому всі визначники будуть рівні нулю і отже

W (x) 0 , a < x < b. Теорема доведена.

Нехай кожна з функцій (x), (x), ... , - розв’язок диференціального рівняння (5.5) . Тоді необхідні і достатні умови лінійної незалежності цих

розв’язків даються теоремою 5.1. і слідуючою теоремою .

Теорема 5.2. Якщо функції (x), (x), ... , - суть лінійно незалежні розв’язки диференціального рівняння (5.5), всі коефіцієнти якого неперервні на (a,b) , то вронскіан цих розв’язків W не дорівнює нулю в жодній точці інтервалу (a,b) .

Доведення. Припустимо протилежне , що в точці (a,b). Складемо систему рівнянь

(5.17)

Так як визначник системи (5.17) , то вона має ненульовий розв’язок

. Розглянемо функцію y =, (5.18)

яка являється розв’язком диференціального рівняння (5.5).

Система (5.17) показує , що в точці розв’язок (5.18) перетворюється в нуль разом із своїми похідними до (n-1) –го порядку . В силу теореми існування і єдиності це значить , що має місце тотожність y (x) = , a < x < b, де не всі дорівнюють нулю . Останнє означає , що розв’язки (x), (x), ... , - лінійно залежні на (a,b). Це протиріччя і доводить теорему.

З теорем 5.1. і 5.2. випливає : для того , щоб n розв’язків диференціального рівняння (5.5) були лінійно незалежними на (a,b) необхідно і достатньо , щоб їх вронскіан не дорівнював нулю в жодній точці цього інтервалу.

Виявляється , для вияснення лінійної незалежності n розв’язків диференціального рівняння (5.5) достатньо переконатися , що W (x) не дорівнює нулю хоча б в одній точці інтервалу (a,b) . Це випливає з наступних властивостей вронскіана від n розв’язків диференціального рівняння (5.5):

а) Якщо вронскіан дорівнює нулю в одній точці (a,b) і всі коєфіцієнти диференціального рівняння (5.5) являються неперервними , то на (a,b).

Дійсно, якщо , то по теоремі 5.2. функції (x), (x), ... , - лінійно залежні на (a,b). Тоді , по теоремі 5.1. на (a,b);

б) якщо вронскіан n розв’язків диференціального рівняння (5.5) відмінний від нуля в одній точці (a,b) , то на (a,b) .

Дійсно , якби W (x) дорівнював в одній точці з (a,b) нулю , то згідно а) на (a,b) , в тому числі і в точці (a,b) , що протирічить умові.

Звідси випливає , якщо n розв’язків диференціального рівняння (5.5) лінійно незалежні на (a,b) , то вони будуть лінійно незалежні на будь-якому (a,b) .

4. Формула Остроградського – Ліувілля.

Ця формула має вигляд (5.19)

Доведення . Розглянемо вронскіан W (x) = і обчислимо його похідну

+ + .

Перших (n-1)-визначників рівні нулю , так як всі вони мають по дві однакових стрічки . Далі домножимо (n-1) стрічки останнього визначника відповідно на і складемо всі nстрічок . В силу диференціального рівняння (5.5) маємо = ,

Звідки маємо формулу (5.19) .

5. Фундаментальна система розв’язків та ії існування.

Означення 5.5. Сукупність n розв’язків диференціального рівняння (5.5) визначених і лінійно незалежних на (a,b) називається фундаментальною системою розв’язків .

З попереднього випливає , для того , щоб система n розв’язків диференціального рівняння (5.5) була фундаментальною системою розв’язків необхідно і достатньо , щоб вронскіан цих розв’язків був відмінний від нуля хоч в одній точці інтервалу неперервності коефіцієнтів диференціального рівняння (5.5) . Всі ці розв’язки повинні бути бути ненульовими .

Теорема 5.3. (про існування ФСР) Якщо коефіцієнти диференціального рівняння (5.5) являються неперервними на (a,b) , то існує фундаментальна система розв’язків на цьому інтервалі.

Доведення . Візьмемо точку (a,b) і побудуємо, використовуючи метод Пікара , розв’язки :

з початковими умовами ;

------------- // --------------- ;

... ------------- // --------------- ... ... ... ....

------------- // --------------- .

Очевидно , що , отже побудовані розв’язки лінійно незалежні .

Теорема доведена .

З методу побудови лінійно незалежних функцій випливає, що таких функцій можна побудувати безліч.

Побудована система розв’язків називається нормованою в точці .

Для будь-якого диференціального рівняння (5.5) існує тільки одна фундаментальна система розв’язків , нормована по моменту .

6. Загальний розв’язок. Число лінійно незалежних розв’язків.

Теорема 5.4. Якщо (x), (x), ... , - фундаментальна система розв’язків диференціального рівняння (5.5) , то формула

y = , (5.20) де , , ... , - довільні константи, дає загальний розв’язок диференціального рівняння (5.5) в області a < x < b,

, , ... , (5.21) , тобто в області визначення

диференціального рівняння (5.5).

Доведення. Якщо (x), (x), ... , - розв’язки диференціального рівняння (5.5) , то лінійна комбінація (5.20) теж розв’язок .

Систему (5.22) можна розв’язати відносно , , ... ,

в області (5.21) , так як . Згідно визначення (5.20) – загальний розв’язок і він містить в собі всі розв’язки диференціального рівняння (5.5) .

Теорема доведена .

Для знаходження частинного розв’язку такого , що (5.23)

необхідно все підставити в (5.22) і визначити , i=1,2,…,n .

Тоді - частинний розв’язок , якщо фундаментальна система розв’язків – нормована в точці , то , тобто

(5.24) загальний розв’язок в формі Коші .

Зауважимо , що загальний розв’язок диференціального рівняння (5.5) є однорідна лінійна функція від довільних констант .

Твердження 5.1. Диференціальне рівняння (5.5) не може мати більше ніж n лінійно незалежних частинних розв’язків.

Дійсно , нехай ми маємо (n+1) частинний розв’язок . Розглянемо nперших . Якщо вони лінійно залежні , то і всі будуть лінійно залежні , так як

, a < x < b, де всі не дорівнють нулю . Якщо ж вони лінійно залежні, то по теоремі 5.4. будь-який розв’язок , в тому числі і виражається через , , ... , , тобто =. Так , що (n+1)-ий розв’язок знову виявився лінійно залежним .

Для побудови диференціального рівняння типу (5.5) по системі лінійно незалежних функцій (x), (x), ... , , які n раз неперервно диференційовані на (a,b) , вронскіан яких , (a,b) необхідно розглянути вронскіан порядку (n+1)

= 0

і розкрити цей визначник по останньому стовпцю .

Якщо відомо один частинний ненульовий розв’язок диференціального рівняння (5.5) , то можна понизати порядок його на одиницю заміною

, або (5.25)

Тоді

і диференціального рівняння (5.5) запишемо у вигляді

Ми отримали диференціальне рівняння порядку (n-1) .

Якщо маємо к лінійно незалежнихчастинних розв’язків , то диференціальне рівняння (5.5) можна понизити на к одиниць .


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно