Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Новое о гравитационном константе G

Тип Реферат
Предмет Математика
Просмотров
442
Размер файла
40 б
Поделиться

Ознакомительный фрагмент работы:

Новое о гравитационном константе G

НОВОЕ О ГРАВИТАЦИОННОЙ КОНСТАНТЕ G: ПЯТНАДЦАТЬ ЭКВИВАЛЕНТНЫХ ФОРМУЛ ДЛЯ ВЫЧИСЛЕНИЯ КОНСТАНТЫ G

Аннотация

Показано, что гравитационная константаG является составной константой, содержит в себе постоянную Планка h, скорость света c и другие константы и функционально с ними связана. В частности константа G имеет функциональную зависимость от следующих важнейших физических констант:

G=f (h,c, R, α, π<FONT)< B>

На основе группы универсальных суперконстант hu , lu , tu , α , π получены 15 эквивалентных формул для вычисления гравитационной константы G[2,3,5,6]. Найденное по этим формулам новое значение константы G равно:

G=6,67286741(89)• 10-11 m3 kg-1s-2.

Новое значение константы G вместо четырех цифр содержит 9 цифр [2,3,6]. Полученные результаты указывают на фундаментальную связь электромагнетизма и гравитации и на существование единого онтологического константного базиса, который является основой физических и астрофизических констант.

  1. ВАЖНЕЙШАЯ КОНСТАНТА ФИЗИКИ И АСТРОФИЗИКИ

Большинство физических констант связаны законами физики с другими константами. Это является решающим фактором для определения каждой константы [17]. Однако такие константы как: гравитационная константа < FONT>G, отношение масс протон-электрон mp/me, постоянная Хаббла H0 считаются не связанн ыми вообще ни с какими другими константами. В отношении важнейшей физической константы G остается надежда на то, что удастся выявить ее связь с чем-либо в рамках будущей единой теории, которая должна объед инить все четыре взаимодействия.

Гравитационная константа G широко используется как в физических теориях,так и в практике, начиная с астрофизики и кончая космонавтикой [19]. Однако ее значение определено с недостаточной точностью. Как отмечает автор в [19]: "повышение точности знания G способствует углублению понимания физики гравитации и уточнению фундаментальных закономерностей смежных с ней отраслей знаний." Кроме того, все е ще остается открытым вопрос о природе гравитации и о сущности гравитационной константы G. Как известно, сама форма закона всемирного тяготения Ньютона – пропорциональность силы массам и обратная пр опорциональность квадрату расстояния, проверена с гораздо большей точностью, чем точность гравитационной константы G. Поэтому основное ограничение на точное определение гравитационных сил наклады вает константа G. Эта константа определена экспериментально. Науке пока неизвестно существует ли аналитическое соотношение для определения гравитационной константы, существует ли связь между кон стантой G и другими фундаментальными физическими константами. В теоретической физике эту важнейшую константу пытаются использовать совместно с константой Планка h и скоростью света c для создания квантовой теории гравитации и для разработки единых теорий. Поэтому, вопрос о первичности и независимости константы G выходит на первый план. Важно выяснить в какой степени зависимы или независимы другие фундаментальные константы. В этом клубке проблем работы по уточнению значения гравитационной константы приобретают особую актуальность. Одним из путей для решения этой задачи являются орбитальные гравитационные эксперименты. Космические исследования открывают тут новые возможности. Однако, как отмечается в [19], для этого потребуются "и компенсация сноса корабля, и высокая точность диагноза температурного и гравитационного полей, и наконец, очень высокая точность определения пространственного положения пробных тел. Кроме того, могут потребоваться дополнительные усилия по доставке корабля в либрационные точки и по обеспечению связи с ним". Сложность экспериментальных работ по уточнению гравитационной константы G заставляет искать другие способы определения ее точного значения.

  1. СОСТАВНАЯ СУЩНОСТЬ КОНСТАНТЫ G

В [5-12] проведены исследования константы G и других фундаментальных физических констант. Ставилась задача выявить константы, которые могут претендовать на роль “истинно фундаментальных” констант. В результате была открыта группа первичных, независимых констант, из которых состоят важнейшие фундаментальные константы [2-9]. Таких первичных, независимых констант пять:

  • фундаментальный квант действия hu (hu=7,69558071(63)•10-37 J s),
  • фундаментальная длина lu (lu=2,817940285(31)•10-15 m),
  • фундаментальный квант времени tu (tu=0,939963701(11)•10-23 s),
  • постоянная тонкой структуры α (α =7,297352533(27)•10-3 ),
  • число π (π=3,141592653589).

Эти пять констант являются “истинно фундаментальными” константами и имеют онтологический статус. Константы, входящие в эту группу, являются первичными и независимыми константами. Чтобы подчеркнуть их “ист инную фундаментальность” они были названы универсальными суперконстантами [2]. Универсальные суперконстанты проистекают из свойств физического вакуума [2 - 12].

Размерные суперконстанты hu, lu, tu определяют физические свойства вакуума и являются константами фундаментального состояния материи [3 - 8]. Суперконстанты π и α определяют геометрические свойства пространства-времени. Суммой геомет рических(π , α) и физических(hu, lu, tu ) супер констант представлен онтологический базис фундаментальных физических констант (Рис.1).

Рис.1 Онтологический базис фундаментальных физических констант.

Группа, состоящая из пяти первичных суперконстант [2,8], позволила выявить важнейшую особенность гравитационной константы G. Оказалось, что эта константа является сос тавной константой и содержит в себе постоянную Планка h, скорость света c, постоянную тонкой структуры α и другие константы. Таким образом, гравитационная константа Ньютона функционально зависима от других фундаментальных констант. В частности, одной из функциональных зависимостей является следующ ая: G=f(h,c, R, α, π). Дальнейшие исследования показали, что константа G, как и другие фундаментальные константы, наиболее просто может быть выражена посредством единой группы констант – универсальных суперконстант [2-9]:

{G, mpl, c, h, … e, me, R, μB,Фо} = f (hu , lu , t u , α , π).

Таким образом, подтверждается подход А.Пуанкаре, согласно которому утверждается дополнительность физики и геометрии [13]. Согласно этому подходу в реальных экспериментах мы всегда наблюдаем некую “сумму” физики и геометрии. Это значит, что экспериментально измеренные значения физических констант также должны содержать в себе "что-то от физики" и "что-то от геометрии". Как показано в [2 - 8], универсальные суперконстанты являются составляющими важ нейших физических констант. "Что-то от физики" и "что-то от геометрии" как раз несут в себе эти составляющие (универсальные суперконстанты) своим составом геометрических и физических суперконстант.

3. ПЯТНАДЦАТЬ ЭКВИВАЛЕНТНЫХ ФОРМУЛ ДЛЯ ВЫЧИСЛЕНИЯ КОНСТАНТЫ G.

Группа универсальных суперконстант (hu , lu, tu, α, π) позволила выявить глобальную взаимосвязь фундаментальных констант и получить математические формулы для вычисления гравитационной константы G[2,3.5]. Ниже приведены 15 эквивалентных формул для вычисления гравитационной константы G. Часть из них ранее были опубликованы в [5, 6, 15]:

G = lu5/tu3huDo, G = lu3/tu2 me Do ,

G = lpl2 lu α/tu2 me, G = 2πc3lu2/αhDo,

G = c3α2lu/2h R Do G = c3lpl2α/hu,

G = tpl2c2lu α/tu2 me, G = c5tpl2α/hu,

G = lu4107/e2tu2Do, G = huα2/4πtu mpl2R,

Из приведенных формул видно, что константа Gвыражается с помощью других фундаментальных констант очень компактными и простыми соотношениями. Все формулы для гравитационной константы сохраняют когерентность. В числе констант, с помощью которых представлена гравитационная константа, использованы такие константы: фундаментальный квант hu, скорость света c, постоянная тонкой структуры α, постоянная Планка h , число π, фундаментальная метрика пространства-времени (lu,tu), элементарная масса me, элементарный заряд e,большое космологическое число Do[2, 14], планковскиеединицы длины lpl, массы mpl< /FONT>, времени tpl. Это указывает на единую сущность электром агнетизма и гравитации и на существование единого фундаментального базиса у всех физических констант. Это же подтверждают пять приведенных ниже дополнительных формул.

Используя константы h, c, R, απ, получим следующую формулу:

G =с3 α5/8 πh R2D0

Используя константы hu, lu , tu,me, α, π, получим следующую формулу:

G = hulu/tume2D0

Используя константы hu, c, α, mpl, пол учим следующую формулу:

G = hu c/α mpl2

Используя константы lu, магнетон Бора μB, me, α, π, получим следующую формулу:

G = B2α2·10-7/lu 2me2Do

Используя константы lu, постоянную Хаббла H, tu, hu,α, получим следующую формулу:

G = 2lu5α H/tu2 hu

Все 15 формул являются эквивалентными. Отметим, что каждая из 14 формул допускает редукцию к формуле:

G = lu5/tu3huDo

Таким образом, формулы показывают, что гравитационная константа G не является независимой. Она связана с важнейшими фундаментальными конста нтами.

4. ЭКСПЕРИМЕНТАЛЬНЫЕ ЗНАЧЕНИЯ КОНСТАНТЫ G.

Значение G было определено впервые английским физиком Г.Кавендишем в 1798 г. на крутильных весах путем измерения силы притяжения между дву мя шарами. Значение, полученное Г.Кавендишем:

G=6,740(50)• 10-11 m3kg-1s-2 .

В последующие годы измерения гравитационной константы продолжались. В 1982 году G.Luther и W.Towler получили значение [20]:

G=6,67260(50)• 10-11 m3kg-1s-2 .

Значение гравитационной константы, рекомендованное Комиссией по фундаментальным физическим константам CODATA в 1986 г.:

G = 6,67259 (85)• 10-11 m3kg-1s-2 .

В [20] приведены результаты измерений гравитационной константы, полученные разными авторами. Значения, полученные разными авторами, значительно отличаются. Эти значения представлены тремя-шестью цифрами. При этом лучшие экспериментальные значения не превышают пять-шесть знаков. Очевидно, это связано с тем, что измерение значений гравитационной константы сопряжено с большими трудностями. На точность измерения оказывает влияние множество факторов. В частности , на точность измерения константы G влияют некоторые космические ритмы (солнечные, лунные, звездные), которые пока не нашли какого-либо объяснения [20]. В 1996 году О.В.Карагиоз и В.П.Измай лов получили значение:

G=6,67290(50)• 10-11 m3kg-1s-2 .

Современное значение константы G, рекомендованное CODATA 1998 [1]:

G=6,673(10)• 10-11 m3kg-1s-2 .

5. НОВОЕ ЗНАЧЕНИЕ КОНСТАНТЫ G, ПОЛУЧЕННОЕ РАСЧЕТОМ.

Рекомендованное значение гравитационной константы претерпело такую метаморфозу: сначала CODATA 1986 предложил более точное значение, затем CODATA 1998 рекомендует менее точное значение. Из всех универсальных физических констант точность в определении G остается сам ой низкой. Среднеквадратическая погрешность для G на несколько порядков превышает погрешность других констант. Точность в три-пять десятичных знаков для важнейшей физической констант ы нельзя считать нормальным положением дел. На важность исследований, целью которых должно быть повышение точности фундаментальных физических констант, обратили внимание Тейлор и Коэн [18]: "Мы считаем, что в области фундаментальных констант должна бы ть проведена большая работа и что романтике следующего десятичного знака нужно отдаться со всей страстью не ради ее самой, но ради новой физики и более глубокого понимания природы, которая здесь еще скрывается от нас". Это в полной мере относится к г равитационной константе.

Используя приведенные выше формулы, значение гравитационной константы можно получить расчетом. При этом точность ее можно повысить сразу на несколько десятичных знаков и приблизить к точно сти электромагнитных констант. Все приведенные выше формулы дают новое значение константы G, которое по точности на четыре порядка(!) выше принятого на сегодня значения. Наибол ее точное значение гравитационной константы можно получить на основе использования следующих физических констант: скорости света в вакууме c, постоянной Планка h , постоянной Ридберга R, постоянной тонкой структуры α, числа π. Такое же точное значение гравитационной константы получается при использ овании универсальных суперконстант (hu , lu , tu , α , π). Новое значение константы G содержит 9 цифр [2]:

Таким образом, более чем за 200 лет своего существования гравитационная константа прошла несколько этапов, на которых ее значение считалось разным:

Значение гравитационной константы, полученное расчетом по приведенным выше формулам, оказалось наиболее точным.

6. СРАВНЕНИЕ РАСЧЕТНЫХ ЗНАЧЕНИЙ КОНСТАНТЫ G

Все приведенные 15 формул дают практически одинаковые значения гравитационной постоянной. Отклонения очень незначительные и наблюдаются в седьмом-девятом знаках, что связано с различной точностью тех констан т, посредством которых представлена гравитационная константа G.

По мере того, как будет возростать точность рекомендованных значений констант, можно будет с еще большей точностью вычислять значение грав итационной константы G. Отметим, что для этого достаточно иметь более точные значения двух констант - h и α [16].

В таблице приведены экспериментальные результаты [20] и расчетные значения константы G, полученные по приведенным выше формулам:

Кем и когда полученоФормулаЗначение
Cavendish, 1798Нет6,740(50)• 10-11 m3kg-1 s-2
Luther, Towler, 1982Нет6,67260(50)• 10-11 m3kg-1 s-2
CODATA 1986Нет6,67259(85)• 10-11 m3kg-1 s-2
Karagioz, Izmaylov, 1996Нет6,67290(50)• 10-11 N m2 kg-2
CODATA 1998Нет6,673(10)• 10-11 m3kg-1 s-2
Kosinov, 2000G = lu5/tu3huDo6,67286741(93)• 10-11m3kg-1 s-2
Kosinov, 2000G = lu3/tu2 me Do6,67286741(91)• 10-11m3kg-1 s-2
Kosinov, 2000G = c5tpl2α/hu6,67286742(97)• 10-11m3kg-1 s-2
Kosinov, 2000G = hulu/tume2D06,6728674(20)• 10-11m3kg-1 s-2
Kosinov, 2000G = hu c/α mpl26,6728674(22)• 10-11m3kg-1 s-2
Kosinov, 2000G = c3α2lu/2h R Do6,6728674(16)• 10-11m3kg-1 s-2
Kosinov, 2000G = lu4107/e2tu2Do6,6728674(13)• 10-11m3kg-1 s-2
Kosinov, 2000G = lpl2 lu α/tu2 me6,6728674(11)• 10-11m3kg-1 s-2
Kosinov, 2000G = c3lpl2α/hu6,67286742(97)• 10-11m3kg-1 s-2
Kosinov, 2000G = 2πc3lu2/αhDo6,67286741(93)• 10-11m3kg-1 s-2
Kosinov, 2000G = tpl2c2lu α/tu2 me6,6728674(11)• 10-11m3kg-1 s-2
Kosinov, 2000G = huα2/4πtu mpl2R∞ ;6,6728674(13)• 10-11m3kg-1 s-2
Kosinov, 2000G =с3 α5/8 πh R2D06,67286741(89)• 10-11m3kg-1 s-2
Kosinov, 2000G = B2α2·10-7/lu2 me2Do6,6728674(22)• 10-11m3kg-1 s-2
Kosinov, 2000G = 2lu5α H/tu2 hu6,6728674(11)• 10-11m3kg-1 s-2

ВЫВОДЫ

  1. Гравитационная константа является составной константой и может быть выражена посредством других физических констант
  2. Получены 15 эквивалентных формул для вычисления гравитационной константы.
  3. Полученные результаты указывают на то, что гравитационная константа не является первичной и независимой константой.
  4. Получено новое расчетное значение гравитационной константы, которое на несколько порядков точнее ее экспериментального значения.
  5. Наиболее точное значение гравитационной константы следует из формулы с применением суперконстант hu, lu, tu, α, π.
  6. На роль истинно фундаментальных констант предлагается группа универсальных суперконстант hu, lu, tu, α< /FONT>, π , которые являются первичными и независимыми константами.

ЛИТЕРАТУРА

1. Peter J. Mohr and Barry N.Taylor. CODATA Recommended Values of the Fundamental Physical Constants: 1998 ; Physics.nist.gov/constants. Constants in the category "All constants"; Reviews of Modern Physics, Vol 72, No. 2, 2000.

2. Косинов Н.В. Физический вакуум и гравитация. Физический вакуум и природа, N4, 2000.

3. Nikolay V. Kosinov, Shanna N. Kosinova “GENERAL CORRELATION AMONG FUNDAMENTAL PHYSICAL CONSTANTS.” Journal of New Energy , 2000 , Vol. 5, no. 1, pages 134 -135.

4. Kosinov N. Five Fundamental Constants of Vacuum, Lying in the Base of all Physical Laws, Constants and Formulas. Physical Vacuum and Nature, N4, 2000.

5. Косинов Н.В. Пять универсальных суперконстант, лежащих в основе всех фундаментальных констант, законов и формул физики и космологии. Актуальные проблемы естествознания начала века. Материалы международной конференции 21 - 25 августа 2000 г., Санкт-Петербург, Россия. СПб.: "Анатолия", 2001, с. 176 - 179.

6.Косинов Н.В. Пять универсальных физических суперконстант. http://piramyd.express.ru/disput/kosinov/grate/text.htm

7. Косинов Н.В. Электродинамика физического вакуума. Физический вакуум и природа, N1, 1999.

8. Косинов Н.В. Законы унитронной теории физического вакуума и новые фундаментальные физические константы. Физический вакуум и природа, N3, 2000.

9. Косинов Н.В. Вакуум-гипотеза и основные теоремы унитронной теории физического вакуума. Физический вакуум и природа, N2, 1999.

10. Косинов Н.В. Проблемы происхождения - новейшее направление физических исследований. Физический вакуум и природа, N4, 2000.

11. Косинов Н.В. Решение проблем происхождения - основная задача унитронной теории физического вакуума. Физический вакуум и природа, N3, 2000.

12. Косинов Н.В. Проблема вакуума в контексте нерешенных проблем физики. Физический вакуум и природа, N3, 2000.

13. Пуанкаре А. Наука и гипотеза. Пуанкаре А. О науке, М., 1983.

14. Косинов Н.В. Большие числа в физике и космологии.(СВЯЗЬ БОЛЬШИХ ЧИСЕЛ С КОНСТАНТАМИ ФИЗИКИ И КОСМОЛОГИИ)


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star
Красноярский государственный аграрный университет
Все сделано хорошо, а самое главное быстро, какие либо замечания отсутствуют
star star star star star
РЭУ им. Г. В. Плеханова
Алексей пошел на встречу, и сделал работу максимально быстро и качественно! Огромное спасибо!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно