Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Фрактальная размерность стримерных каналов

Тип Реферат
Предмет Наука и техника
Просмотров
1249
Размер файла
44 б
Поделиться

Ознакомительный фрагмент работы:

Фрактальная размерность стримерных каналов

Балханов Василий Карлович

Бурятский НЦ СО РАН, г. Улан-Удэ

Тремя независимыми методами измерена фрактальная размерность плоскостной проекции стримерных каналов. На основе фрактального исчисления скейлинговые показатели полной длины внутри выделенной области и числа ветвлений стримерных каналов выражаются через фрактальную размерность.

Введение. В последнее время активизировалось изучение стримерных разрядов - сети каналов, возникающих при электрическом пробое в диэлектриках (воздухе, полимерных изоляторах, фотоэмульсии) [1,2]. Изучение стало особенно актуальным в связи с использование кабелей с полимерной изоляцией [2]. Однако отмечается, что количественной теории, описывающей рост ветвления электрического пробоя, до сих пор нет. В статье геометрическую конфигурацию разрядных каналов, рост числа каналов, их ветвление предложено рассматривать как фрактальные разветвленные объекты и описывать их количественно с помощью понятия фрактальной размерности [3-5]. Электрический пробой - видимый в оптическом диапазоне стримерный канал в диэлектриках, образованный локально растущим электрическим полем. Пробой возникает, когда на небольшой участок удаленной от заряженной подложки подается такое высокое напряжение, что происходит собственно электрический пробой. Под такое определение подходят разряды молний в воздухе, частичные разряды в эпоксидной смоле, плазменные структуры в фотоэмульсии. В указанном смысле стримерные каналы относятся к классу универсальности, зависящие только от двух безразмерных величин: фрактальной размерности и размерности пространства, в котором происходит процесс. М.Д. Носковым и др. [2] прямым измерением, было определено, что фрактальная размерность D частичных разрядов лежит в пределах 1.45 ¸ 1.55. Н.А. Поповым [1] определялась фрактальная размерность коронного разряда, им получено, что D = 2.16 0.05. Для разряда молний также измерялась фрактальная размерность, при этом установлено, что на масштабах от десятков метров и выше D = 1. Видим существенное различие в значениях для размерности. В связи с этим в статье тремя независимыми методами измерена фрактальная размерность планового рисунка системы стримерных каналов (рис. 1) [1].

Рис. 1. Система микроразрядов, пересекающих диэлектрическую фотопластинку [1].

Используемые методы являются результатами фрактального исчисления [6], основы последнего для связности изложения представлены в следующей части. Изложение в статье теории фрактального исчисления также связано с тем, что начиная с первых книг Б. Мандельброта и кончая научными работами последнего времени, пишут "- структуры, обладающие в том или ином смысле пространственным самоподобием -". Мы дадим замкнутую систему аксиом фрактального исчисления, и теперь не нужно будет говорить "- в том или ином смысле -".

Аксиомы фрактального исчисления. Фрактальная геометрия, открытая Б. Мендельбротом 30 лет назад, основывается на экспериментальном факте, что в общем случае длина L произвольной кривой (которая может быть изломана в любой точке) степенным образом зависит от масштаба измерения d :

L = Cd1-D. (1)

Здесь С - типичный для фрактальной геометрии размерный множитель, свой для каждой кривой, D - фрактальная размерность. Для обычных, гладких линий D = 1 и получаем "истинную" длину. Если кривая плотно заполняет всю плоскость (простой пример - броуновская траектория), то для нее D = 2. Формулу легко проверить, нарисовав синусоподобную линию и, меняя раствор циркуля, измерить длину такой линии. С появлением формулы Мандельброта (1) сразу же было осознано, что фрактальные линии масштабно - инварианты (самоподобны). Самоподобие означает, что как вся линия, так и любой ее участок обладают одной и той же размерностью. Если линию увеличить в l раз, то для измерения новой длины lL достаточно использовать масштаб, равный ld, т.е.

lL = C(ld ) 1-D. (2)

Формулы Мандельброта и условие самоподобия в форме (2) достаточно взять в виде аксиом фрактального исчисления, тогда чисто логическим путем можно получить практически все известные на последнее время результаты. Мы их применим к "разветвленным структурам", к которым относятся и сети стримерных каналов.

Разветвленные структуры. Для построения разветвленных структур возьмем линию и разрежем ее на множество неравнозначных отрезков. Разбросав эти отрезки по плоскости, мы как раз и получаем пример искомых структур. Проведем в (2) замену обозначений, это аналогично тому, что шестиметровую длину сначала измеряем двухметровым масштабом, укладывая ее три раза. Но можно использовать трехметровый масштаб, прикладывая ее только два раза. Итак, переобозначим l на 1/R, где R считаем линейным размером выделяемой области. Тогда из (2) получаем
L = C×d1-D×RD. Убрав все неопределенные масштабные множители, находим:

L ~ R D. (3)

Применение формулы (3) к определению фрактальной размерности разветвленных структур состоит в следующем. На плановом рисунке стримерных каналов выделяется некоторая область (на рис. 1 это окружность радиусом R), и подсчитывается общая длина всех каналов, попадающих в рассматриваемую область. Так мы получаем первые значения L1 и R1. Далее выделяется другая область (чуть больше первоначальной), и после подсчета получаются другие значения L2 и R2. Таким образом, в итоге мы получаем набор значений L и R, по которым методом линейной регрессии строим прямую на осях LnL и LnR. Угловой коэффициент будет равняться фрактальной размерности D. Таким образом было установлено, что для стримерных каналов

D = 1.52 0.03.

Для улучшения статистики нами выбирались разные формы областей разбиения - от прямоугольных до круглых, а также менялось и само число таких разбиений.

Здесь мы изложили первый из используемых методов измерения фрактальной размерности. Второй метод измерения состоит в подсчете числа N пересечений ветвлениями стримерных каналов периметра области. На рис. 1 границей выделенной области является окружность радиусом R. Легко сосчитать, что для изображенного на рисунке случая N = 53. Варьируя радиус R, находим, что N и R связаны степенным (скейлинговым) законом:

N~Rn, (4)

с показателем n = 1.012 0.05. Аппарат фрактального исчисления [6] позволяет связать n с размерностью D, именно:

n = 2 (D -1). (5)

Качественно результат можно обосновать следующим образом. Для обычных дифференцируемых линий число N не должно зависеть от R, т.е. при D = 1 должно быть n = 0. Если линия заполняет всю плоскость, т.е. D = 2, то N будет квадратично зависеть от области, т.е. n = 2. Предполагая линейную зависимость между n и D, приходим к результату (5). При строгом подходе необходимо использовать понятие фрактальной производной, в данном случае от степенной функции (3) с нормирующим множителем 1/R2:

.

А это и есть формула (4) с показателем (5). Теперь находим D = 1 + n / 2 = 1.506 0.005.

Приступим к третьему методу измерения величины D. Метод основан на анализе графика на рис. 2 [2], где представлена зависимость роста границы канальных лучей от

Рис. 2 Зависимость длины дендрита от времени роста. Сплошная кривая - эксперимент, штриховая - моделирование.

времени. Пропорционально со временем увеличивается и число ветвлений, т.е. N~t и из (4) следует, что

R~t1/n. (7)

На интервале времен от 1 мин до 6 мин из рис. 2 следует, что R~t0.943, откуда n = 1.06 и D = 1.53.

Обсуждение. Тремя независимыми методами получена фрактальная размерность плоскостной проекции стримерных каналов, представленных на рис. 1. Полученные значения 1.53, 1.52 и 1.52 совпадают с данными работы [2]. Согласованность значений для размерности указывает на работоспособность предложенных выше аксиом фрактального исчисления. Подобной рис. 2 имеется и результат в работе [1], где полечен следующий закон для числа ветвления: N~R1.18. Из него следует, что D = 1.59, т.е. близкая к нашим значениям размерность. Из энергетических соображений Н.А. Поповым [1] приведено D = 2.16, отличие этого значения от 1.59 указывает, что величина D = 2.16 относится только к скейлинговому показателю и еще предстоит задача связать ее с фрактальной размерностью.

Полученный в работах [1,2] и нами усредненный результат D = 1.53 указывает на выполнение закона класса универсальности для электрических разрядов в различных диэлектрических средах.

Список литературы

Попов Н.А. Исследование пространственной структуры ветвящихся стримерных каналов коронного разряда // Физика плазмы, 2002, том 28, ¦ 7, с. 664-672.

Носков М.Д., Малиновский А.С., Закк М., Шваб А.Й. Моделирование роста дендритов и частичных разрядов в эпоксидной смоле // ЖТФ, 2002, том 72, вып. 2, с. 121-128.

Федер Е. Фракталы. - М.: Мир, 1991, 254 с.

Шредер М. Фракталы, хаос, степенные законы. - Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001, 528 с.

Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. - Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001, 128 с.

Балханов В.К. Введение в теорию фрактального исчисления. - Улан-Удэ.: Изд. Бурятского гос. ун-та, 2001, 58 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 395 оценок star star star star star
среднее 4.9 из 5
Рудн
Работа выполнена отлично! хороший исполнитель ! Раньше срока все сделала!
star star star star star
ЮУрГУ
Отличная сделанная работа, да и еще и раньше срока, без замечаний. Спасибо.
star star star star star
ОГИС
Работа выполнена быстро и качественно! По написанию-доступна к восприятию! Легко читается!...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить задачи по земельному праву

Решение задач, Юриспруденция

Срок сдачи к 18 янв.

1 минуту назад

Выполнить 9 тестов внимательно!

Тест дистанционно, Инвестиционная безопасность

Срок сдачи к 16 янв.

1 минуту назад

Необходимо выполнить и оформить три лабораторных работы в программе...

Лабораторная, Математическое моделирование

Срок сдачи к 15 янв.

3 минуты назад

Задача. Вариант 13

Решение задач, Станкостроение, машиностроение, детали машин

Срок сдачи к 21 янв.

4 минуты назад

ответить на вопросы

Ответы на билеты, Металлургия цветных металлов

Срок сдачи к 19 янв.

4 минуты назад

Практические работы

Другое, Транспортная инфраструктура, автомобильное дело, машиностроение, детали машин

Срок сдачи к 18 янв.

4 минуты назад

Оформить списка литературы согласно требованиям.

Диплом, Информатика

Срок сдачи к 17 янв.

5 минут назад

Выполнить 3 теста по Технологии продукции общественного питания. М-08210

Тест дистанционно, Общественное питание, кулинария

Срок сдачи к 15 янв.

7 минут назад

Патентные исследования по теме студенческой работы «Составы и способы получения пленок из полимерных материалов»

Курсовая, Основы научных исследований и защита информации

Срок сдачи к 23 янв.

7 минут назад

Выполнить строго!!!

Контрольная, Экономическая безопасность

Срок сдачи к 15 янв.

9 минут назад

Сущность языка, проблема его происхождения

Реферат, Русский язык и культура речи

Срок сдачи к 15 янв.

9 минут назад

Методика преподавания дисциплин (модулей) психолого-педагогического профиля

Тест дистанционно, Психология и педагогика

Срок сдачи к 16 янв.

9 минут назад

Криминалистика. Ответить на 2 вопроса и одна задача

Решение задач, Юриспруденция

Срок сдачи к 18 янв.

9 минут назад

Лейкоз семейства кошачьих

Диплом, Дипломная работа + презентация

Срок сдачи к 11 мар.

9 минут назад

Вам нужно сконструировать представления для решения трех различных...

Решение задач, Анализ и визуализация данных, дизайн, информатика экономика,

Срок сдачи к 15 янв.

10 минут назад

Тест дистанционно

Тест дистанционно, Менеджмент организации

Срок сдачи к 30 янв.

11 минут назад
11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно