Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Показатели надежности восстанавливаемого объекта

Тип Реферат
Предмет Информатика
Просмотров
1324
Размер файла
61 б
Поделиться

Ознакомительный фрагмент работы:

Показатели надежности восстанавливаемого объекта

Лекция 13

НАДЕЖНОСТЬ ВОССТАНАВЛИВАЕМЫХ ОБЪЕКТОВ И СИСТЕМ

1. Постановка задачи. Общая расчетная модель

При расчете показателей надежности восстанавливаемых объектов и систем наиболее распространено допущение:

  • экспоненциальное распределение наработки между отказами;
  • экспоненциальное распределение времени восстановления.

Допущение во многом справедливо, поскольку во-первых, экспоненциальное распределение наработки описывает функционирование системы на участке нормальной эксплуатации, во-вторых, экспоненциальное распределение описывает процесс без «предыстории».

Применение экспоненциального распределения для описания процесса восстановления позволяет при ординарных независимых отказах представить анализируемые системы в виде марковских систем.

При экспоненциальном распределении наработки между отказами и времени восстановления, для расчета надежности используют метод дифференциальных уравнений для вероятностей состояний (уравнений Колмогорова-Чепмена).

Случайный процесс в какой либо физической системе S, называется марковским, если он обладает следующим свойством: для любого момента t0 вероятность состояния системы в будущем (t > t0) зависит только от состояния в настоящем (t = t0) и не зависит от того, когда и каким образом система пришла в это состояние (иначе: при фиксированном настоящем будущее не зависит от предыстории процесса - прошлого).

t < t0

t > t0

Для марковского процесса «будущее» зависит от «прошлого» только через «настоящее», т. е. будущее протекание процесса зависит только от тех прошедших событий, которые повлияли на состояние процесса в настоящий момент.

Марковский процесс, как процесс без последействия, не означает полной независимости от прошлого, поскольку оно проявляется в настоящем.

При использовании метода, в общем случае, для системы S, необходимо иметь математическую модель в виде множества состояний системы S1 , S2 , … , Sn , в которых она может находиться при отказах и восстановлениях элементов.

Для рассмотрения принципа составления модели введены допущения:

- отказавшие элементы системы (или сам рассматриваемый объект) немедленно восстанавливаются (начало восстановления совпадает с моментом отказа);

- отсутствуют ограничения на число восстановлений;

- если все потоки событий, переводящих систему (объект) из состояния в состояние, являются пуассоновскими (простейшими), то случайный процесс переходов будет марковским процессом с непрерывным временем и дискретными состояниями S1 , S2 , … , Sn .

Основные правила составления модели:

1. Математическую модель изображают в виде графа состояний.

Элементы графа:

а) кружки (вершины графа S1 , S2 , … , Sn ) – возможные состояния системы S, возникающие при отказах элементов;

б) стрелки – возможные направления переходов из одного состояния Si в другое Sj .

Над/под стрелками указываются интенсивности переходов.

Примеры графа:

S0 – работоспособное состояние;

S1 – состояние отказа.

«Петлей» обозначаются задержки в том или ином состоянии S0 и S1 соответствующие:

- исправное состояние продолжается;

- состояние отказа продолжается (в дальнейшем петли на графах не рассматриваем).

Граф состояний отражает конечное (дискретное) число возможных состояний системы S1 , S2 , … , Sn . Каждая из вершин графа соответствует одному из состояний.

2. Для описания случайного процесса перехода состояний (отказ/ восстановление) применяют вероятности состояний

P1(t), P2(t), … , Pi(t), … , Pn(t),

где Pi(t) – вероятность нахождения системы в момент t в i-м состоянии, т. е.

Pi(t) = P{S(t) = si}.

Очевидно, что для любого t

(1)

(нормировочное условие, поскольку иных состояний, кроме S1 , S2 , … , Sn нет).

3. По графу состояний составляется система обыкновенных дифференциальных уравнений первого порядка (уравнений Колмогорова-Чепмена), имеющих вид:

(2)

В общем случае, интенсивности потоков ij и ij могут зависеть от времени t.

При составлении дифференциальных уравнений пользуются простым мнемоническим правилом:

а) в левой части – производная по времени t от Pi(t);

б) число членов в правой части равно числу стрелок, соединяющих рассматриваемое состояние с другими состояниями;

в) каждый член правой части равен произведению интенсивности перехода на вероятность того состояния, из которого выходит стрелка;

г) знак произведения положителен, если стрелка входит (направлена острием) в рассматриваемое состояние, и отрицателен, если стрелка выходит из него.

Проверкой правильности составления уравнений является равенство нулю суммы правых частей уравнений.

4. Чтобы решить систему дифференциальных уравнений для вероятностей состояний P1(t), Pi(t), … , Pn(t) необходимо задать начальное значение вероятностей

P1(0), Pi(0), … , Pn(0), при t = 0,

сумма которых равна единице:

Если в начальный момент t = 0 состояние системы известно, например, S(t=0) = Si, то Pi(0) = 1, а остальные равны нулю.

2. Показатели надежности восстанавливаемых систем

Все состояния системы S можно разделить на подмножества:

SK S – подмножество состояний j = , в которых система работоспособна;

SM S – подмножество состояний z = , в которых система неработоспособна.

S = SK SM ,

SK SM = 0.

1. Функция готовности Г(t) системы определяет вероятность нахождения системы в работоспособном состоянии в момент t

где Pj(t) – вероятность нахождения системы в работоспособном j-м состоянии;

Pz(t) – вероятность нахождения системы в неработоспособном z-м состоянии.

2. Функция простоя П(t) системы

3. Коэффициент готовности kг.с. системы определяется при установившемся режиме эксплуатации (при t ). При t устанавливается предельный стационарный режим, в ходе которого система переходит из состояния в состояние, но вероятности состояний уже не меняются

Коэффициент готовности kг.с. можно рассчитать по системе (2) дифференциальных уравнений, приравнивая нулю их левые части dPi(t)/dt = 0, т.к. Pi = const при t . Тогда система уравнений (2) превращается в систему алгебраических уравнений вида:

(3)

и коэффициент готовности:

есть предельное значение функции готовности при установившемся режиме t .

4. Параметр потока отказов системы

(4)

где jz – интенсивности (обобщенное обозначение) переходов из работоспособного состояния в неработоспособное.

5. Функция потока отказов

(5)

6. Средняя наработка между отказами на интервале t

(6)

Примечание: При t , когда Pj(t = ) = Pj( ) = Pj , средняя наработка между отказами

T0= kг./ ,

где () = .

В качестве примера вычисления показателей надежности, рассмотрен восстанавливаемый объект, у которого поток отказов простейший (пуассоновский) с параметром потока

= = 1/ T0,

а распределение времени восстановления подчиняется экспоненциальному распределению с интенсивностью восстановления

= 1/ TВ ,

где T0 – средняя наработка между отказами;

TВ – среднее время восстановления.

P0(t) – вероятность работоспособного состояния при t;

P1(t) – вероятность неработоспособного состояния при t.

Система дифференциальных уравнений:

(7)

Начальные условия: при t = 0 P0(t = 0) = P0(0) = 1; P1(0) = 0, поскольку состояния S0 и S1 представляют полную группу событий, то

P0(t) + P1(t) = 1.

(8)

Выражая P0(t) = 1 - P1(t), и подставляя в (7) получается одно дифференциальное уравнение относительно P1(t):

dP1(t)/dt = (1 – P1(t)) - P1(t).

(9)

Решение уравнения (9) производится с использованием преобразования Лапласа.

Преобразование Лапласа для вероятностей состояния Pi(t):

т. е. Pi(S) = L{Pi(t)} – изображение вероятности Pi(t).

Преобразование Лапласа для производной dPi(t)/dt:

После применения преобразования Лапласа к левой и правой частям уравнения, получено уравнение изображений:

(9)

где L{} = L{1} = /S .

При P1(0) = 0

SP1(S) + P1(S)( + ) = /S.

P1(S)( S + + ) = /S,

откуда изображение вероятности нахождения объекта в неработоспособном состоянии:

(10)

Разложение дроби на элементарные составляющие приводит к:

Применяя обратное преобразование Лапласа, с учетом:

L{f(t)} = 1/S, то f(t) = 1;

L{f(t)} = 1/( S + a), то f(t) = e-at,

вероятность нахождения объекта в неработоспособном состоянии определяется:

(11)

Тогда вероятность нахождения в работоспособном состоянии P0(t) = 1 - P1(t), равна

(12)

С помощью полученных выражений можно рассчитать вероятность работоспособного состояния и отказа восстанавливаемого объекта в любой момент t.

Коэффициент готовности системы kг.с.. определяется при установившемся режиме t , при этом Pi(t) = Pi = const, поэтому составляется система алгебраических уравнений с нулевыми левыми частями, поскольку

dPi(t)/dt = 0.

Так как kг.с есть вероятность того, что система окажется работоспособной в момент t при t , то из полученной системы уравнений определяется P0 = kг.с .

При t алгебраические уравнения имеют вид:

(13)

Дополнительное уравнение: P0 + P1 = 1.

Выражая P1 = 1 - P0 , получаем 0 = P0 - (1 - P0 ), или = P0 ( + ), откуда

(14)

Остальные показатели надежности восстанавливаемого элемента:

- функция готовности Г(t), функция простоя П(t)

Г(t) = P0 (t); П(t) = 1 - Г(t) = P1(t).

- параметр потока отказов (t) по (4)

(t) = P0(t) = Г(t).

При t (стационарный установившийся режим восстановления)

(t) = () = = P0 = kг.с.

- ведущая функция потока отказов (t )

- средняя наработка между отказами (t )

t0= kг.с./ = kг.с./ kг = 1/ .

На рис. приведено изменение вероятности нахождения объекта в работоспособном состоянии.

Рис. 1

Анализ изменения P0(t) позволяет сделать выводы:

1) При мгновенном (автоматическом) восстановлении работоспособности (= )

/ = 0 и P0(t) = 1.

2) При отсутствии восстановления ( = 0)

/ = и P0(t) = e-t,

и вероятность работоспособного состояния объекта равна ВБР невосстанавливаемого элемента.

Некоторые дополнения по применению метода дифференциальных уравнений для оценки надежности.

Метод дифференциальных уравнений может быть использован для расчета показателей надежности и невосстанавливаемых объектов (систем).

В этом случае неработоспособные состояния системы являются «поглощающими» и интенсивности выхода из этих состояний исключаются.

Для невосстанавливаемого объекта граф состояний имеет вид:

Система дифференциальных уравнений:

Начальные условия: P0 (0) = 1; P1(0) = 0.

Изображение по Лапласу первого уравнения системы:

После группировки:

откуда

Используя обратное преобразование Лапласа, оригинал вероятности нахождения в работоспособном состоянии, т. е. ВБР к наработке t:

3. Связь логической схемы надежности с графом состояний

Переход от логической схемы к графу состояний необходим:

1)при смене методов расчета надежности и сравнении результатов;

2) для оценки выигрыша в надежности при переходе от невосстанавливаемой системы к восстанавливаемой.

Рассмотрим типовые логические структуры надежности. Типовые соединения рассмотрены для невосстанавливаемых систем (граф – однонаправленный, переходы характеризуются ИО ).

Для восстанавливаемых систем в графах состояний добавляются обратные стрелки, соответствующие интенсивностям восстановлений .


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
СПбГУТ
Оформил заказ 14 мая с сроком до 16 мая, сделано было уже через пару часов. Качественно и ...
star star star star star
Красноярский государственный аграрный университет
Все сделано хорошо, а самое главное быстро, какие либо замечания отсутствуют
star star star star star
РЭУ им. Г. В. Плеханова
Алексей пошел на встречу, и сделал работу максимально быстро и качественно! Огромное спасибо!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно