Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Угорський метод рішення завдань про призначення

Тип Реферат
Предмет Информатика и программирование
Просмотров
473
Размер файла
147 б
Поделиться

Ознакомительный фрагмент работы:

Угорський метод рішення завдань про призначення

Контрольна робота

“Угорський метод рішення завдань про призначення”

Зміст

Вступ

1Постановка завдання

2 Розв’язання завдання

3Приклад розв’язання задачі за допомогою угорського методу

Висновок

Література


Вступ

Тема контрольної роботи «Угорський метод рішення завдань про призначення».

Мета роботи: навчитися застосовувати угорський метод для рішення завдань про призначення, а саме:

- алгоритм угорського методу;

- завдання вибору.

Угорський метод є одним з найцікавіших і найпоширеніших методів рішення транспортних завдань. Основна ідея цього методу була вперше висловлена угорським математиком Е. Егерварі (звідси й назва методу) задовго до виникнення теорії лінійного програмування.

Розглянемо спочатку основні ідеї угорського методу на прикладі рішення завдання вибору (завдання про призначення), що є окремим випадком Т-задачі, а потім узагальнимо цей метод для довільної Т-задачі.


1Постановка завдання

Припустимо, що єрізні роботи імеханізми, кожний з яких може виконувати будь-яку роботу, але з неоднаковою ефективністю. Продуктивність кожного i-го механізмупри виконанні j-тої роботипозначимо Cij, і = 1,...,n; j = 1,...,n. Потрібно так розподілити механізми по роботах, щоб сумарний ефект від їхнього використання був максимальний. Таке завдання називається завданням вибору або завданням про призначення.

Формально вона записується так. Необхідно вибрати таку послідовність елементів з матриці

щоб сума була максимальна й при цьому з кожного рядка й стовпця був обраний тільки один елемент.

2 Розвязання завдання

Введемо наступні поняття.

Нульові елементиматриці називаються незалежними нулями, якщо для будь-якогоCijрядок і стовпець, на перетинанні яких розташований елемент, не містять інші такі елементи.

Дві прямокутні матриці С и D називаються еквівалентними (C ~ D), якщо Cij ~Dijдля всіх i,j . Завдання про призначення, обумовлені еквівалентними матрицями, є еквівалентними (тобто оптимальні рішення однієї з них будуть оптимальними й для другий, і навпаки). Блок-схема алгоритму угорського методу:

Попередній етап. Розшукують максимальний елемент в j-му стовпці й всі елементи цього стовпця послідовно віднімають із максимального. Цю операцію проробляють над всіма стовпцями матриці С. У результаті утвориться матриця з ненегативними елементами, у кожному стовпці якої є, принаймні, один нуль.

Далі розглядають i-тий рядок отриманої матриці, розшукують її мінімальний елемент і з кожного елемента цього рядка віднімають мінімальний. Цю процедуру повторюють із усіма рядками. У

результаті одержимо матрицю З00 ~ C), у кожному рядку й стовпці якої є, принаймні, один нуль. Описаний процес перетворення С у С0 називається приведенням матриці.

Знаходимо довільний нуль у першому стовпці й відзначаємо його зірочкою. Потім переглядаємо другий стовпець, і якщо в ньому є нуль, розташований у рядку, де немає нуля із зірочкою, то відзначаємо його зірочкою. Аналогічно переглядаємо один за іншим всі стовпці матриці З0 і відзначаємо, якщо можливо, що випливають нулі знаком '*'. Очевидно, що нулі матриці З0, відзначені зірочкою, є незалежними. На цьому попередній етап закінчується.

(k+1)-а ітерація. Припустимо, що k-та ітерація вже проведена й у результаті отримана матриця Сk. Якщо в ній є рівно n нулів із зірочкою, то процес рішення закінчується. У противному випадку переходимо до (k+1) –ої ітерації.

Кожна ітерація починається першим і закінчується другим етапом. Між ними може кілька разів проводитися пари етапів: третій - перший. Перед початком ітерації знаком '+' виділяють стовпці матриці Сk, які містять нулі із зірочками.

Перший етап. Переглядають невиділені стовпці Сk. Якщо серед них не виявиться нульових елементів, то переходять до третього етапу. Якщо ж невиділений нуль матриці Сk виявлений, то можливо один із двох випадків:

1) рядок, що містить невиділений нуль, містить також і нуль із зірочкою;

2) цей рядок не містить нуля із зірочкою.

У другому випадку переходимо відразу до другого етапу, відзначивши цей нуль штрихом.

У першому випадку цей невиділений нуль відзначають штрихом і виділяють рядок, у якій він утримується (знаком '+' праворуч від рядка). Переглядають цей рядок, знаходять нуль із зірочкою й знищують знак '+' виділення стовпця, у якому втримується даний нуль.

Далі переглядають цей стовпець (який уже став невиділеним) і відшукують у ньому невиділений нуль (або нулі), у якому він перебуває. Цей нуль відзначають штрихом і виділяють рядок, що містить такий нуль (або нулі). Потім переглядають цей рядок, відшукуючи в ній нуль із зірочкою.

Цей процес за кінцеве число кроків закінчується одним з наступних результатів:

1) всі нулі матриці Сk виділені, тобто перебувають у виділених рядках або стовпцях. При цьому переходять до третього етапу;

2) є такий невиділений нуль у рядку, де немає нуля із зірочкою. Тоді переходять до другого етапу, відзначивши цей нуль штрихом.

Другий етап. На цьому етапі будують наступний ланцюжок з нулів матриці Сk: вихідний нуль зі штрихом, нуль із зірочкою, розташований в одному стовпці з першим нулем зі штрихом в одному рядку з попереднім нулем із зірочкою й т.д. Отже, ланцюжок утвориться пересуванням від 0' до 0* по стовпці, від 0* до 0' по рядку й т.д.

Можна довести, що описаний алгоритм побудови ланцюжка однозначний і кінцевий, при цьому ланцюжок завжди починається й закінчується нулем зі штрихом.

Далі над елементами ланцюжка, що знаходяться на непарних місцях ( 0' ) ставимо зірочки, знищуючи їх над парними елементами (0*). Потім знищуємо всі штрихи над елементами Сk і знаки виділення '+'. Кількість незалежних нулів буде збільшено на одиницю. На цьому (k+1)-а ітерація закінчена.

Третій етап. До цього етапу переходять після першого, якщо всі нулі матриці Сk виділені. У такому випадку серед невиділених елементів Сk вибирають мінімальний і позначають його h (h>0). Далі віднімають h із всіх елементів матриці Сk, розташованих у невиділених рядках і додають до всіх елементів, розташованим у виділених стовпцях. У результаті одержують нову матрицю С'k, еквівалентну Сk. Помітимо, що при такому перетворенні, всі нулі із зірочкою матриці Сk залишаються нулями й у С'k, крім того, у ній з'являються нові невиділені нулі. Тому переходять знову до першого етапу. Завершивши перший етап, залежно від його результату або переходять до другого етапу, або знову повертаються до третього етапу.

Після кінцевого числа повторень черговий перший етап обов'язково закінчиться переходом на другий етап. Після його виконання кількість незалежних нулів збільшиться на одиницю й (k+1)-а ітерація буде закінчена.

3Приклад розвязання задачі за допомогою угорського методу

Вирішити завдання про призначення з наступною матрицею:

Операціії

Обладнання

1234
1378583
25761661
316162587
445823275

При рішенні завдання використаємо наступні позначення:

Знак виділення '+', що підлягає знищенню, обводимо кружком; коло, як і раніше, указуємо стрілками.

Попередній етап. Відшукуємо максимальний елемент першого стовпця - 73. Віднімаємо з нього всі елементи цього стовпця. Аналогічно для одержання другого, третього й четвертого стовпців нової матриці віднімаємо всі елементи цих стовпців від 82, 58, і 87 відповідно. Одержимо матрицю С'(C'~C).


0

4084
16764226
5766330
2802612

Тому що в кожному рядку С' крім другого є нуль, то віднімаємо лише мінімальний елемент другого рядку (16) від усіх елементів цього рядку і отримуємо матрицю З0 ~ С' і на цьому процес приведення матриці закінчується.

Далі шукаємо й відзначаємо знаком '*' незалежні нулі в З0, починаючи з першого рядка.

0*4084
0602610
5766330*
280*2612

Перша ітерація. Перший етап. Виділяємо знаком '+' перший, другий, і четвертий стовпці матриці З0, які містять 0*.

Переглядаємо невиділений третій стовпець, знаходимо в ньому невиділений нуль ІЗ13 = 0, відзначаємо його штрихом і виділяємо знаком '+' перший рядок. Переглядаємо цей рядок, знаходимо в ній елемент ІЗ11 = 0* і знищуємо знак виділення першого стовпця, що містить 0*.

0*40’84
0602610
5766330*
280*2612

Шукаємо мінімальний елемент у невиділеній частині матриці З0 (тобто елементи, які лежать у стовпцях і рядках, не відзначених знаком '+').

Друга ітерація. Перший етап. Переглядаючи всі невиділені елементи, знаходимо серед них невиділений нуль ІЗ12 = 0, відзначаємо його знаком штрих та переходимо до другого етапу.

0*40’84 +
0’602610
5766330*
280*2612

Другий етап. Починаючи з елемента ІЗ12 = 0', будуємо коло, рухаючись від нього по стовпці. Знаходимо нуль із зірочкою ІЗ11= 0*, далі від нього рухаємося уздовж першого рядка й знаходимо 0'(ІЗ13).

0*4 0’84 +
0’602610
5766330*
280*2612

Таким чином, коло побудоване: 0'21-0*11-0'13. Заміняємо штрих на зірочку й знищуємо зірочки над парними елементами кола, а також всі знаки виділення стовпців і рядків. Після цієї ітерації кількість незалежних нулів (0*) стало дорівнювати 4 (розмірності матриці З) і тому алгоритм закінчує роботу. Шукані елементи призначення відповідають позиціям незалежних нулів матриці З3 (тобто 0*).

0’40*84
0*602610
5766330*
280*2612

Висновок

Відповідне значення цільової функції:

F = C12+C24+C31+C43 = 57+82+58+87=284


Література

1. Системы автоматизированного проектирования. В 9-ти кн.Учебное пособие для вузов. Под редакцией Норенкова И.П. М.: Высш. шк., 1986.

2. Норенков И.П. Введение в автоматизированное проектирование технических устройств и систем. Учебное пособие для вузов. - М.: Высш. шк., 1986.

3. П. Шеннен и др. Математика и САПР. т.1. М.: Мир, 1988.

4. Батищев Д.И. Методы оптимального проектирования. М.: Радио и связь, 1984.

5.Системы автоматизированного проектирования в радиоэлектронике. Справочник. М.: Радио и связь, 1986.

6. Погребной В.К. О декомпозиции графов на классы изоморфных подграфов. В кн.: Вопросы программирования и автоматизации проектирования. Изд. ТГУ, 1979, с. 82-96.

7. Петренко А.И. Основы автоматизации проектирования. К.: Техника, 1982. - 295 с.

8. Ильин В.Н.. Основы автоматизации схемотехнического проектирования. Г.: Энергия, 1979. - 392 с.

9. Демидович Б.П., Марон И.А. Основы вычислительной математики. Г.: Изд-во «Наука», 1966. - 664 с.

10.Разевиг В.Д. Система сквозного проектирования электронных устройств DesignLab 8.0.- М.: Изд-во «Солон»,1999. - 698 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно