Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Чисельне розвязання задач оптимального керування

Тип Реферат
Предмет Информатика
Просмотров
568
Размер файла
443 б
Поделиться

Ознакомительный фрагмент работы:

Чисельне розвязання задач оптимального керування

ЧИСЕЛЬНЕ РОЗВ’ЯЗАННЯ ЗАДАЧ оптимального керування


1 Дискретизація задачі із закріпленим лівим і вільним правим кінцем. Необхідні умови оптимальності

Розглянемо неперервну задачу оптимального керування

,(1)

,(2)

, , . (3)

Виконаємо дискретну апроксимацію даної задачі. Для цього розіб’ємо відрізок точками , і будемо обчислювати значення цільового функціонала і закону руху тільки в точках розбиття: , , . Закон руху в цьому випадку можна записати у вигляді:

.

Тепер дискретна задача оптимального керування, що апроксимує неперервну задачу (1) – (3), матиме вигляд:

, , (4)

, (5)

(6)

, . (7)

Для пошуку оптимального розв’язку отриманої дискретної задачі може бути застосований метод множників Лагранжа. Функція Лагранжа має вигляд:

,

,(8)

де .

Обмеження на керування введемо далі, під час реалізації чисельного методу. Відзначимо, що перед першим доданком стоїть знак «–», оскільки і якщо не додавати «–», то характер екстремуму початкової функції зміниться.

Якщо – локально-оптимальний процес для задачі (4) – (7), то існують такі нерівні одночасно нулю множники Лагранжа , , , , що матимуть місце наступні умови:

1. або

,

,

. (10)

2. або

,

. (11)

Із (9) одержимо ітераційні співвідношення для спряжених змінних , а з (10) – співвідношення для :

, (12)

. (13)

Перепишемо співвідношення (12) у вигляді:

.

Очевидно, що останнє співвідношення є аналогом спряженої системи для неперервних задач керування. Дійсно,

.

Якщо , то з останнього співвідношення одержимо


.

Зі співвідношення (13) випливає, що .

Сформулюємо критерій оптимальності для задачі (4) – (7). Вважатимемо, що функції , неперервно-диференційовані за змінними і опуклі за . Тоді для локально-оптимального процесу існують такі множники Лагранжа , , , , не всі рівні нулю одночасно, що матимуть місце необхідні умови екстремуму:

1) умови стаціонарності в точці :

;

2) . (14)

Розпишемо (14), використовуючи вираз для функції Лагранжа:

Перетворимо вираз під знаком мінімуму, переходячи до довільного :

Або

Якщо , то з останнього співвідношення одержимо

2 Ітераційний метод розв’язання дискретної задачі оптимального керування з двійним перерахуванням

Розглянемо ітераційний метод пошуку оптимального керування задачі (4) – (7). Суть методу полягає в тому, що на кожній ітерації обчислюються два вектори: і . Перший із них містить -е наближення для керувань у моменти часу для системи (14), при , а другий – -е наближення для фазових станів системи в ці ж моменти часу. Отже, на кожній ітерації ми одержуємо процес , що є -м наближенням до шуканого оптимального процесу.

Контроль у методі подвійного перерахування полягає в повторному перерахуванні результатів задачі і порівнянні отриманих даних для різних значень кроку розбиття. У випадку розбіжності виконується корекція і обчислення повторюються.

Розглянемо алгоритм методу.

1. Задаємо крок розбиття та точність обчислень .

2. Задаємо початкове наближення – припустимий набір керувань на кожному кроці – початкову стратегію керування:

, , ,

де – наближення керування в момент на ітерації .

3. За визначеною в п. 2 стратегією керування будуємо фазову траєкторію процесу

, ,

на початкової ітерації , використовуючи початкові умови і різницеві співвідношення, що апроксимують рівняння руху:

, .

4. Визначаємо початкове наближення відповідно до (5).

5. Знаходимо спряжені змінні за формулами (12) – (13).

Визначаємо наступні наближення до оптимального керування ,

в момент як розв’язки задачі (15) або (16):

, .

7. Обчислюємо відповідну стратегії траєкторію

за формулами (4), (6):

, , .

8. Знаходимо наступне наближення цільового функціонала

за формулою (5).

9. Якщо , то переходимо до п. 10, інакше вважаємо, що

, , і переходимо до п. 13.

10. Перевіряємо, чи виконується задана точність обчислень. Якщо

і ,

то переходимо до п. 13, інакше – до п. 11.

11. Позначаємо

, , .

12. Виконуємо наступний крок ітераційного методу – п. 5.

13. Позначаємо

, , – розв’язок, отриманий із кроком розбиття .

1 Якщо крок не ділився, то переходимо до п. 15, інакше – до п. 1

15. Ділимо крок

. Тоді і переходимо до п. 2 при .

1 Перевіряємо задану точність. Якщо

і ,

то переходимо до п. 18, інакше переходимо до п. 17.

17. Позначаємо


, , , , і переходимо до п. 15 – наступного кроку подвійного перерахування.

18. , , – розв’язок задачі.

Кінець алгоритму.

3. Оптимальне стохастичне керування: формулювання із зовнішнім інтегралом

Розглянемо відображення , що задане формулою

, (17)

за таких припущень:

параметр приймає значення з вимірного простору . Для будь-якої фіксованої пари задана ймовірнісна міра на просторі , а символ у формулі (12) означає зовнішній інтеграл відносно цієї міри. Отже,

;

функції і відображують множину відповідно в множини і , тобто , ;

скаляр додатний.

Формули (1), (6) є окремими випадками відображення з (12). Очевидно, що відображення (1) для детермінованої задачі випливає з (12), якщо множина складається з єдиного елемента, а відображення (6) (для стохастичної задачі зі зліченним простором збурень) відповідає випадку, коли множина зліченна, а є -алгеброю, складеною із всіх підмножин .

Очевидно, що відображення з (12) задовольняє припущенню монотонності. Якщо на множини , і функції , і накласти вимоги вимірності, то витрати за кроків можна визначити в термінах звичайного інтегрування для будь-якої стратегії , для якої функції , вимірні.

Для початкового стану і стратегії ймовірнісні міри

, ...,

у сукупності із системою рівнянь

, (18)

визначають єдину міру на -кратному прямому добутку копій простору . У випадку, якщо, , і виконується одна з умов

або

,

то функція витрат за кроків, що відповідає вимірній стратегії , приводиться до звичайного вигляду
,

де стани , виражено як функції змінних , ..., за допомогою рівнянь (13) та початкового стану .

Рекурентне співвідношення методу динамічного програмування для розв’язання багатоетапних задач оптимального стохастичного керування зі скінченним горизонтом можна записати так:

, ,

де – щільність розподілу величини.

4 Оптимальне стохастичне керування:мультиплікативний функціонал витрат

Розглянемо відображення , що задане формулою

, (19)

за припущення, що параметр приймає значення зі зліченної множини відповідно до заданого розподілу ймовірностей, що залежать від стану і керування . Вважатимемо також, що , , , . Тоді відображення з формули (14) задовольняє припущенню монотонності.

Якщо , , то задача оптимального керування з мультиплікативним функціоналом витрат і скінченним горизонтом матиме такий вигляд:

, (20)

. (21)

а відповідна задача з нескінченним горизонтом:

, (22)

. (23)

Границя в (23) існує, якщо : або .

Самостійний інтерес становить задача з експоненціальною функцією витрат

,

,

де .

Для розв’язання багатоетапних задач оптимального стохастичного керування з мультиплікативним функціоналом витрат використовується таке рекурентне співвідношення алгоритму динамічного програмування:

, ,

де – щільність розподілу величини .

5. Мінімаксне керування

Розглянемо задачу керування системою, у якій некерованими впливами є стратегії супротивника (або явища природи) , , що обираються залежно від поточного стану і керування . Вважатимемо, що припустимі стратегії супротивника приймають значення із множини , . Будемо обчислювати стратегію керування , орієнтуючись на найгіршу поведінку супротивника. Розглянемо відображення , задане формулою

,

за таких припущень:

параметр приймає значення з деякої множини , а – непуста підмножина при будь-яких , ;

функції і відображують множину в множини та відповідно, тобто , ;

скаляр додатний.

За таких умов припущення про монотонність для відображення має місце. Якщо при цьому , і для всіх , , , то відповідну -крокову задачу мінімаксного керування можна сформулювати так:

, (17)

. (18)

Задача з нескінченним горизонтом формулюється аналогічно:

, (24)

. (25)

Границя у співвідношенні (25) існує при виконанні будь-якої з умов:

· , , , ;

· , , , ;

· , , , , і деякого .

Для розв’язання багатокрокових мінімаксних задач оптимального стохастичного керування рекурентне співвідношення алгоритму динамічного програмування використовується у такому вигляді:

, ,

,

.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно