Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Определение динамических характеристик системы

Тип Реферат
Предмет Информатика и программирование
Просмотров
457
Размер файла
46 б
Поделиться

Ознакомительный фрагмент работы:

Определение динамических характеристик системы

Министерство образования Республики Беларусь

Учреждение образования

''Белорусский государственный университет информатики и радиоэлектроники''

кафедра информационные технологии автоматизированных систем

РЕФЕРАТ

на тему:

«Определение динамических характеристик системы»

Минск, 2008


СОДЕРЖАНИЕ

1. Взаимная корреляционная функция между входом и выходом системы

2. Определение импульсной переходной функции объекта по статистическим характеристикам

3. Определение импульсной переходной функции по детерминированным характеристикам


Определение характеристик системы по экспериментальным данным называется идентификацией систем. Этот важный класс задач теории управления располагает большим набором методов, основанных на методах анализа систем.

Среди них важное место занимают методы, которые связаны с подачей на вход определенных воздействий. Зная взаимосвязь между входом и выходом системы во временной и частотной областях, можно определить переходную или частотную характеристику. Например, реакция на единичное ступенчатое воздействие является единичной переходной функцией.

Однако определение переходных и передаточных функций линейных систем или объектов управления посредством подачи на ее вход искусственных воздействий определенного вида (импульсов, ступенчатых воздействий, гармоник) и замера реакции системы на эти воздействия не всегда возможно.

Причин тому может быть несколько.

Во-первых, нередко подача на вход системы невозможна или нежелательна, так как это ведет к нарушению нормального хода технологического процесса. И в то же время необходимо определить характеристики системы в режиме ее нормальной эксплуатации.

Во-вторых, очень часто на входные воздействия специального вида накладываются случайные неконтролируемые воздействия (шумы и помехи), в результате чего оказываются невозможным точное определение динамических характеристик системы по реакции на типовые воздействия.

В этих случаях прибегают к методам определения характеристик системы, основанным на взаимосвязи статистических характеристик процессов, протекающих в системе. Приведенные выше выражения не всегда удобны. Приведем дополнительные сведения на этот счет.

1 Взаимная корреляционная функция между входом и выходом системы

Процессы на входе и выходе системы с импульсной переходной функцией связаны уравнением свертки, которое можно записать в виде

. (1)

Если же дополнительно к управляющему воздействию на систему действует возмущающее воздействие (помеха) , так что - импульсная переходная функция по помехе, то в приведенном выше выражении появляется дополнительное слагаемое

. (2)

Пусть внешние воздействия являются стационарными случайными процессами и, как следствие, таковым же является выходной процесс .

Для центрированных процессов (при нулевых математических ожиданиях) определим взаимную корреляционную функцию входного и выходного процессов как математическое ожидание произведения этих процессов, один из которых сдвинут по времени

. (3)

Здесь, как и раньше, использовано усреднение по времени вместо усреднения по множеству.

Подставим сюда выражение выходного процесса (2)

.

Изменим порядок интегрирования

.

Внутренние интегралы здесь представляют выражения корреляционных функций. Поэтому последнее выражение можно представить в виде:

.

Если помеха не коррелирована с управляющим воздействием , что чаще всего и бывает, то последнее слагаемое равно нулю и

. (4)

Полученное выражение представляет собой интеграл свертки. Оно аналогично выражению (1). Если рассматривать корреляционную функцию как входное воздействие, а взаимную корреляционную функцию – как выходной процесс, то указанная аналогия станет очевидной.

Заметим, что в окончательном выражении (4) не фигурируют ни характеристики помехи, ни импульсная переходная функция по помехе. Не отражен даже сам факт наличия помехи.

Если бы вывод этого выражения был основан на использовании выражения (1), а не (2), т.е. в предположении, что помеха отсутствует, то и тогда было бы получено выражение связи (4).

Этим не исчерпываются замечательные свойства полученного выражения. Предположим, что на входе системы действует «белый шум», т.е. . Тогда по основному свойству d - функции

.

Другими словами, если на вход системы подавать «белый шум», то взаимно корреляционная функция будет численно равна импульсной переходной функции системы.

Это чисто теоретический результат, но он имеет большое практическое значение. Как известно, «белый шум» - это абстрактное математическое понятие, идеализация случайного процесса, спектральная плотность которого одинакова для любой частоты. Такого процесса в природе не существует: для его генерации потребовался бы источник бесконечно большой мощности. Однако к такой идеализации прибегают всякий раз, когда изменением спектральной плотности в полосе пропускания системы можно пренебречь.

Но даже с учетом этого обстоятельства полученный результат имеет большое значение, потому что чем ближе спектральная плотность к «белому шуму», тем ближе взаимная корреляционная функция к импульсной переходной функции.

2 Определение импульсной переходной функции объекта по статистическим характеристикам

Если входной процесс не может считаться «белым шумом», для определения импульсной переходной функции необходимо решить интегральное уравнение (4).

Рассчитывать на аналитическое решение данного уравнения после экспериментального определения корреляционных функций и в подавляюще большинстве случаев не приходится. Для этого применяются численные методы.

Для решения различного рода уравнений численными методами необходима дискретизация задачи. В данном случае для этого достаточно заменить интеграл в выражении (4) конечной суммой.

При вычислении интеграла по формуле прямоугольников это происходит естественным образом. Для применения упомянутой формулы интервал интегрирования разбивают на достаточно малые подинтервалы длиной Т , на каждом из которых подынтегральная функция мало изменяется.

В качестве интервала интегрирования возьмем интервал (0, L). Нижняя граница определяется условием физической осуществимости: при отрицательных значениях аргумента импульсная функция равна нулю, а конечный верхний предел определяется условием устойчивости системы: импульсная переходная функция устойчивой системы должна стремиться к нулю.

Следовательно, найдется такое значение аргумента импульсной переходной функции L, что при больших значениях она пренебрежимо мала. Далее, разобьем интервал (0, L) на N одинаковых по длине подинтервалов, каждый из которых имеет длину T.

После этого уравнение (4) можно с достаточной степенью точности представить в виде суммы

.

Полагая , получим систему N уравнений относительно N неизвестных

. (5)

Обозначив , , и учитывая четность корреляционной функции , полученную систему уравнений можно записать в развернутом

;

;

………………………………….…….

.

или матричном виде

В результате решения этой системы уравнений можно получить значения импульсной переходной функции при .

3 Определение импульсной переходной функции по детерминированным характеристикам

Из уравнения связи между входным и выходным процессами в детерминированном случае также можно получить систему уравнений относительно значений импульсной переходной функции.

Действительно, связь между входом и выходом во временной области описывается уравнением свертки (1). Оно до сих пор рассматривалось как выражение выходной координаты через входную, как интегральный оператор, который ставит входному процессу в соответствие некоторый выходной процесс.

Описание импульсной переходной функции и входного процесса в этом случае должно быть известно.

Если же известными являются другие две компоненты из трех: входного и выходного процесса и требуется определить импульсную переходную характеристику, то на данное выражение следует смотреть как на интегральное уравнение.

Оно может быть решено и в результате получено значение импульсной переходной функции.

Действительно, повторив рассуждения по выводу уравнения (5) из уравнения (4), из уравнения (1) получим уравнение

.

При получим отсюда систему N уравнений относительно N неизвестных . Обозначив , , , полученную систему уравнений можно записать в виде

.

Различие между двумя этими системами уравнений не только в том, что в одном случае матрица системы уравнений симметричная, а в другом – нет. Основное различие в степени влияния шумов на результат вычислений.

Если шумы значительны, то ошибки при определении импульсной переходной функции по детерминированным характеристикам могут быть очень велики.

В то же время, если шумы (помехи) при определении соответствия межу входом и выходом некоррелированы с входным воздействием, то они могут иметь любую интенсивность.

Точность результата вычислений от этого не изменится, но при этом необходимо оперировать не значениями самих сигналов, а их корреляционными функциями.

Если же помехи отсутствуют, то нет необходимости прибегать к статистическим методами. В детерминистическом случае наряду с рассмотренным только что подходом к определению импульсной переходной функции существует еще один, обладающий определенными достоинствами по сравнению с только что рассмотренным.

Они связаны с большей простотой уравнения, которое необходимо решать для определения дискретных значений импульсной переходной функции.

Как уже отмечалось, связь между входным и выходным процессами выражается не только интегралом свертки (1), но и интегралом

В свое время были даны доказательства возможности замены переменного верхнего предела бесконечным значением. В данном случае в этом нет необходимости. Наоборот, всякое сужение области интегрирования приводит к упрощению системы уравнений, которую необходимо решать.

Заменим интеграл конечной суммой точно так же, как это делалось ранее. Получим

.

Здесь так же все процессы рассматриваются в дискретные моменты времени . Полученное выражение здесь также можно рассматривать как систему N уравнений относительно N неизвестных , но лучше рассматривать его как рекуррентное уравнение.

Обозначив , , , полученную систему уравнений для различных, последовательно увеличивающихся значениях n можно записать в виде

;

;

;

………………………….

Отсюда

;

;

;

………………………………

Отсюда уже видно, что значения импульсной переходной характеристики в дискретные моменты времени могут быть определены последовательно, друг за другом, до тех пор, пока они не станут пренебрежимо малыми.


ЛИТЕРАТУРА

1. Мирошник И.В. Теория автоматического управления. Линейные системы. - СПб.: Питер, 2005.

2. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых Знаний, 2007.

3. Методы классической и современной теории автоматического управления в 3-х т. Т.1: Анализ и статистическая динамика систем автоматического управления / Под ред. Н.Д. Егупова. – Изд. МГТУ им. Н.Э. Баумана, 2005.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно