Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Определение оптимального плана перевозок

Тип Реферат
Предмет Логика
Просмотров
1005
Размер файла
188 б
Поделиться

Ознакомительный фрагмент работы:

Определение оптимального плана перевозок

ЛАБОРАТОРНАЯ РАБОТА

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ПЛАНА ПЕРЕВОЗОК

(ТРАНСПОРТНАЯ ЗАДАЧА)

Цель работы

1. Познакомиться с общей постановкой транспортной задачи.

2. Решить задачу методом северо-западного угла

3. Решить задачу методом потенциалов

4. Дать анализ результатов расчетов

Постановка транспортной задачи

Пусть в пунктах А1, А2,…,Аmпроизводится некоторая однородная продукция. Таким образом, имеется mпоставщиков Аi, где =. Объем производства в пункте Аiсоставляет ai единиц. Величину aiназывают мощностью поставщика, а - суммарной мощностью всех поставщиков. Допустим, что выпускаемая продукция потребляется в пунктах В1, В2, …, Вn, причем в пункте Вj, составляет bjединиц продукции. Величина bj называется емкостью (спросом) потребителя Вj , где . Общий объем потребления (суммарная емкость) составляет .

В практике встречаются два типа транспортных задач.

1. Объем производства совпадает с объемом потребления, то есть

=.

Такой тип задач называется закрытыми транспортными задачами.

2. Объем производства не совпадает с объемом потребления, то есть

.

Такой тип задач называется закрытыми транспортными задачами.

Рассмотрим принцип решения закрытой транспортной задачи (1 тип).

При этом предполагается:

- от каждого поставщика возможна перевозка к любому потребителю;

- стоимость перевозки единицы продукции от поставщика Аi к потребителю Вj известна и составляет Cijденежных единиц. ( В некоторых случаях вместо стоимости перевозки может быть указано расстояние от Аi до Вj .)

Условия задачи могут быть записаны в виде таблицы 1.

Таблица 1.

Поставщики

Запасы сырья (мощность)Потребители и их спрос
В1В2. . .Вj. . .Вn
b1b2. . .bj. . .bn
А1а1C11C12. . .C1j. . .C1n
А2а2C21C22. . .C2j. . .C2n
. . .. . .. . .. . .. . .. . .. . .. . .
АiaiCi1Ci2. . .Cij. . .Cin
. . .. . .. . .. . .. . .. . .. . .. . .
АmamCm1Cm2. . .Cmj. . .Cmn

В задаче требуется разработать план перевозок, обеспечивающий с наименьшими транспортными затратами запросы всех потребителей при условии, что предложения и спрос будут сбалансированы.

Пусть объем перевозок из пункта Аi в пункт Вj ( от i– го поставщика к j– му потребителю) будет равен Хij. Тогда целевая функция будет равна

Z= (1)

В то же время должны выполняться условия (ограничения):

, i=; (2)

, j=; (3)

; (4)

Xij0, i=, j=. (5)

В равенствах (2) и (3) имеется m+n уравнений с mn неизвестными, причем одно из них есть следствие других в силу того, что . Следовательно, в равенствах (2) и (3) будет m+n-1 линейно независимых уравнений и каждая программа (план0 перевозок должна содержать не более чем m+n-1 положительных перевозок.

Принимаем условие, что клетки табл. 1. в которых объем перевозок Хij не равен нулю, называть базисными, а в которых Хij=0 – свободными. Элементы таблицы перевозок Cij называть показателями критерия оптимальности, а совокупность CijХijпланом перевозок.

Транспортная задача относится к задачам линейного программирования, ее решение может быть осуществлено различными методами, наиболее распространенными из них являются: метод «северо-западного угла», распределенный метод и метод потенциалов.

Решение транспортной задачи методом потенциалов

Метод потенциалов решения транспортной задачи основан на выборе некоторого исходного варианта прикрепления поставщиков к потребителям и последовательном его преобразовании вплоть до получения оптимального варианта.

Рассмотрим применение метода потенциалов на конкретном производственном примере составления оптимального плана перевозок. Пусть имеется три оптовых базы, которые поставляют сырье для пяти производственных предприятий. Условия задачи представлены в табл.2. Себестоимость перевозки сырья представлена в условных единицах.

Требуется найти такой план перевозок, чтобы общая стоимость транспортных затрат была минимальной.

Таблица 2.

Руководствуясь здравым смыслом, прикрепим поставщиков к потребителям следующим образом.

Таблица 3.

В клетках, в которых записаны поставки (базисные клетки), показатели критерия оптимальности обведены кружком, чтобы облегчить ориентацию в таблице. Получившийся план перевозок отвечает одному из условий – вся мощность поставщиков (оптовых баз) полностью распределена, весь спрос потребителей (предприятий) полностью удовлетворен.

Стоимость транспортных работ:

Z=224+381+73+202+82+104+304=363 у.е.

Этот план является допустимым, однако является ли он оптимальным, насколько оправдал себя здравый смысл, утверждать трудно.

При перераспределении поставок составляются цепи, для которых характерны следующие особенности:

1. цепь является замкнутым многоугольником;

2. вершинами цепи являются клетки таблицы, причем одна из вершин –свободная, а все остальные базисные;

3. все углы цепи являются прямыми, каждый отрезок цепи, ограниченный двумя вершинами, принадлежит к одному столбцу или к одной строке таблицы;

4. цепь всегда имеет четное число вершин;

5. отрезки цепи могут проходить через базисные клетки, не являющимися вершинами данной цепи, при этом объемы перевозок в таких клетках не изменяются.

Вершины, в которых поставка при распределении увеличиваются, отмечают плюсом и называют положительными вершинами, а если поставка уменьшается, отмечают минусом и считают отрицательными.

На рисунке 1 представлен пример составления элементарной цепи, где три базисные клетки обозначены кружками, а одна свободная – квадратом. При перераспределении поставок по данной цепи получается следующий результат.

Пусть А2 будет поставлять 1 т сырья в пункт В1 , тогда необходимо уменьшить поставки на 1 т из А1в В1 и из А2 в В2 и увеличить из А1 в В2 , чтобы выполнялось условие равенства запаса сырья в базах и спроса предприятий. Уменьшая или увеличивая поставки, тем самым уменьшаем или увеличиваем значение целевой функции Z. Цепь дает возможность установить, насколько изменится стоимость транспортировки при записи поставки в 1 т , в ту клетку цепи, которая была свободной.

Рисунок 1. Пример построения цепи к свободной клетке А2 - В1

Алгебраическую сумму показателей Cij в вершинах цепи называем характеристикой цепи. Следовательно, в представленном примере

Е= – 4 +2 +1 – 3= – 4.

Следовательно, изменение поставок по данной цепи на 1 т уменьшает значение Zна 4 у.е.

Суть метода потенциалов заключается в том, что проверки допустимого плана на оптимальность особым образом определяются числа, называемые «потенциалами», при помощи которых достаточно просто вычисляются характеристики цепей к свободным клеткам. Единственное требование к потенциалам – каждый показатель критерия оптимальности базисной клетки должен быть равен алгебраической сумме потенциалов строки и столбца.

Потенциалы строк и столбцов определяются следующим образом. В табл. 3 произвольно принимается потенциал строки А1 равным 3 (может быть принято и любое другое число). В строке А1 находятся две базисные клетки, показатели Cij, которых равны 4 и 1. Тогда потенциал столбца В1 равен 4-3=1, а В2 1 – 3 = – 2. В столбце В2 находится еще одна базисная клетка, в которой Cij=3, следовательно, потенциал строки А2 равен 3 – (–2) =5, тогда потенциалы столбцов В3 и В4 равны соответственно 2 – 5 = – 3, строки А3 = 7 и столбца В5 = – 3 .

Обозначив потенциалы строк через ui , потенциалы столбцов vj, а показатели оптимальности в базисных клетках через Cij , можно записать

Cij= ui+vj; ui= Cij - vj; vj = Cij - ui (6)

Характеристики цепей к свободным клеткам обозначимЕij. Зная потенциалы их строк и столбцов,

Еij = Cij– (ui+vj) . (7)

Если показатель Cij меньше алгебраической суммы потенциалов строки и столбца, то характеристика Еij будет отрицательной. Перераспределение поставок по цепи к этой клетке уменьшает целевую функцию на величину характеристики (в расчете на единицу перераспределяемой продукции). Наоборот, если показатель Cij больше алгебраической суммы потенциалов строки и столбца, то характеристика Еij будет положительной и перераспределение по цепи к этой клетке увеличит значение целевой функции.

Если же характеристик Еij будет равна нулю, то перераспределение поставок по данной цепи не изменит значения целевой функции. Для базисных клеток характеристики равны нулю.

Продолжая решение задачи, условие которой представлено в табл.3, определим характеристики свободных клеток:

Е13 = 3; Е14 = 4; Е15 = 4; Е21 = – 4; Е25 = 3 –(5+( – 3)) =1;

Е31 = – 5; Е32 = 0; Е33 = – 2.

Видно, что отрицательных характеристик три: А2 - В1 , А3 - В1 и А3В3 . Наибольшая по абсолютной величине отрицательная характеристика в А3 - В1 , которая составляет – 5. перераспределим поставки по цепи к этой клетке. Для этого составим цепь с вершинами: А1 - В1,А1 – В2,А2 – В2 ,А2 – В4, ,А3 – В4 ,

А3 - В1. Положительными вершинами в этой цепи будут А3– В1, ,А1 – В2, ,А2 – В4 (так как увеличение поставок в этих клетках приводит к уменьшению значения целевой функции), а остальные отрицательными.

Наименьшая по величине поставка в отрицательных вершинах цнпи равна 7 (в А2 – В2). Прибавляем по 7 к объемам поставки в положительных вершинах и вычитаем из поставок в отрицательных также по 7. Получившийся план перевозок записываем в таблицу 4 и определяем новые потенциалы, произвольно приняв потенциал строки А1 равным 1. Значение целевой функции при новом плане поставок будет на 75=35 у.е. меньше, т.е.:

Z=363 – 35=328 у.е.

Характеристики свободных клеток для вновь созданного плана будут следующими:

Е13 = -2; Е14 = -1; Е15 = -1; Е21 = 1; Е22 =5; Е25 =1;

Е32 = 5; Е33 = – 2.

В таблице 4 отрицательных характеристик свободных клеток четыре: А1 – В3,А1 – В4,А1 – В5 ,А3 – В3. Перераспределим поставки по цепи к любой из этих клеток, допустим к А1 – В5, по цепи: А1 – В5, А3 – В5, А3 – В1, А1 – В1. Положительные вершины цепи А1 – В5 и А3 – В1, а отрицательные А3 – В5 и А1 – В1, минимальная поставка равна 15 от поставщика А1 к потребителю В1, т.е. А1 – В1 (таблица 4/1).

Таблица 4.

Таблица 4/1.

Прибавляем по 15 к поставкам в положительных вершинах и отнимаем по 15 в отрицательных вершинах цепи. Получившийся план перевозок представлен в таблице 5.

Значение целевой функции при новом плане:

Z=328 – 151 =313 у.е.

Аналогично определяем потенциалы строк и столбцов и рассчитываем характеристики цепей к свободным клеткам:

Е11 = 1; Е14 = 0; Е13 = -1; Е21 = 1; Е22 =4; Е23 =1;

Е32 = 4; Е33 = – 2.

Таблица 5.

Принимаем перераспределение поставок по цепи к А3 – В3, т.к. характеристика данной клетки отрицательная и наибольшая по абсолютному значению. Составляем цепь перераспределения: А3 – В3, А2 – В3 , А3 – В4 , А3 – В4 (таблица 5/1).

Таблица 5/1.

Минимальная поставка в отрицательных вершинах (А3 – В4) равна 3. Получившийся план перевозок представлен в таблице 6.

Значение целевой функции при новом плане:

Z=313 – 32=307 у.е.

Аналогично определяем потенциалы строк и столбцов и рассчитываем характеристики цепей к свободным клеткам:

Е11 = 1; Е14 = 2; Е13 = 1; Е21 = -1; Е22 =2; Е25 = -1;

Е32 = 4; Е34 = 2.

Отрицательными характеристиками обладают две клетки: А2 – В1 и А2 – В5. Произведем поставку 17 т из А2в В1 (таблица 7).

Таблица 6.

Таблица 7.

При таком плане перевозок значение целевой функции:

Z=307 – 17=209 у.е.

Характеристики цепей к свободным клеткам:

Е11 = 1; Е14 = 2; Е13 = 1; Е22 = 3; Е23 =2; Е25 = 0;

Е32 = 4; Е34 = 1.

Таким образом, в данном плане перевозок нет ни одной отрицательной характеристики. Нулевая оценка клетки А2 – В5 указывает на то, что данную программу можно изменить так, что эта клетка станет базисной, но при этом получится равноценный план с той же величиной затрат.

Отсутствие отрицательных характеристик свидетельствует о том, что нельзя построить цепей, перемещение поставок по которым уменьшит значение целевой функции. Значит, распределение является оптимальным. Задача решена.

Оптимальный план перевозок даст снижение стоимости перевозок по сравнению с исходным:

%.

ИСХОДНЫЕ ДАННЫЕ К ЛАБОРАТОРНОЙ РАБОТЕ №2

Таблица 1.

БазыПункты потребленияЗапасы сырья, т
В1В2В3В4В5В6В7В8В9В10
А13162483476120
А22357326513140
А39847154724180
А43665373253200
А5423241235490
А61316242432130
А78231263214200
А84123641671170
А91433517194150
А103254862837100
Спрос потре-бителей, т12014018020090130200170150100

Таблица 2.

ВариантБазаВариантБазаВариантБаза
11,2,3,4,579,10,1,2,3132,5,7,8,9
22,3,4,5,6810,2,3,4,5148,4,6,3,1
33,4,5,6,791,3,5,7,9159,3,6,7,10
44,5,6,7,8102,4,6,8,10161,2,8,9,10
55,6,7,8,9111,2,5,6,9173,9,2,7,6
66,7,8,9,10129,7,1,3,5181,4,6,8,9

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно