Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Строительная теплофизика 2

Тип Реферат
Предмет Строительство
Просмотров
1758
Размер файла
166 б
Поделиться

Ознакомительный фрагмент работы:

Строительная теплофизика 2

Министерство образования и науки РФ

ГОУ ВПО Саратовский государственный технический университет

Кафедра «Теплогазоснабжение и вентиляция»

Строительная теплофизика

Выполнила: студентка ТГС-32

Вартанян А.Р.

Проверила: доцент, к.т.н.

Осипова Н.Н.

Саратов 2008

Содержание

Реферат

Введение

Исходные данные к курсовой работе 5

I. Теплотехнический расчет наружных ограждений 6

II. Расчет воздушного режима эксплуатации ограждений 7

III. Расчет влажностного режима эксплуатации наружной стены7

IV. Расчет теплового режима помещения 7

Заключение 11

Список использованных источников 12

Реферат

Пояснительная записка - страниц, 3 таблицы, 3 рисунка, 12 источников литературы.

ЖИЛОЕ ЗДАНИЕ, МЕТЕРЕОЛОГИЧЕСКИЕ УСЛОВИЯ, ТЕМПЕРАТУРА, ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ, ТЕПЛОВОЙ, ВЛАЖНОСТНЫЙ, ВОЗДУШНЫЙ РЕЖИМ, ТЕПЛОПОТЕРИ.

Объектом разработки является жилое здание.

Цель работы – определение теплового, влажностного, воздушного режимов ограждающих конструкций и разработка мероприятий по экономии тепловой энергии здания.

В результате проведенной работы были определены толщины утеплителя наружной стены, утеплителя в перекрытиях над холодным подвалом и чердаком, рассчитаны сопротивления теплопередаче, воздухо- и паропроницанию для наружных ограждений здания.

Определены теплопотери всех помещений, намечены мероприятия по экономии тепловой энергии в здании.

Использование полученных результатов в проектной и эксплуатационной практике позволит снизить теплопотери в целом по зданию на 35% при обеспечении минимальных приведенных затрат и комфортных условий в помещении.

Введение

Важной задачей современного строительства является повышение уровня комфортности зданий, при минимальных затратах материальных и энергетических ресурсов. Создание комфортных условий в помещениях жилых зданий необходимо для здоровья человека и повышения его творческой активности.

Целью работы является определение тепловых, влажностных, воздушных режимов ограждающих конструкций и разработка мероприятий по экономии тепловой энергии в здании без нарушения условий комфорта.

Актуальность такого подхода при разработке курсовой работы вытекает из постановлений правительства РФ, в которых отмечалось, что главный упор должен быть сделан на экономию энергоресурсов и повышение производительности труда.

Пути решения поставленной цели заключаются в увеличении термического сопротивления ограждающих конструкций, уменьшения уровня инфильтрации воздуха через неплотности в окнах.

Курсовая работа выполняется на основании и согласно заданию, выданному руководителем проекта.

Исходные данные к курсовой работе.

1. Климатические данные, по табл. 1 [9]:

- температура наиболее холодной пятидневки обеспеченностью 0,92, tС.П. = -43ºС;

- средняя температура отопительного периода tОТ.П. = -8,6ºС;

- продолжительность отопительного периода ZОТ.П. = 249 суток;

- относительная влажность наиболее холодного месяца φН = 81%;

- максимальная скорость ветра за холодный месяц январь
υН = 3,4 м/с;

2. Конструкция остекления

3. Характеристика расчетного помещения:

- назначение помещения – жилая комната;

- температура воздуха в помещении tВ = 18ºС;

- относительная влажность помещения φВ = 40%, т.к. г. Братск находится в сухой зоне (рис. 2, [9]);

4. Теплофизические характеристики строительных материалов в табл. 1, по приложению 3* [10].

Таблица 1.

Характеристика

материалов

Плотность ρ, кг/м3

Коэф – т теплопроводности

λ, Вт/м∙К

Коэф – т паропроницания

μ, мг/м∙ч∙Па

Железобетон

2500

1,92

0,03

Керамзитобетон на квар- цевом песке с поризацией

1200

0,80

0,09

Пенопласт

125

0,06

0,23

Рубероид

600

0,17

Плиты пенополистирольные

40

0,052

0,15

Керамзитовый гравий

600

0,17

0,23

Вермикулит вспученный

200

0,09

0,23

Стяжка из цементно-песчаного раствора

1800

0,76

0,09

Щиты паркетные, сосна вдоль волокон

500

0,29

0,32

I. Теплотехнический расчет наружных ограждений.

1. Определяем требуемое сопротивление теплопередаче наружной стены:

(1.1)

где n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху, по табл. 3* [10]:

для наружной стены и окна n = 1;

для перекрытий чердачных n = 0,9;

для перекрытий над холодным подвалом n = 0,75;

tВ – температура внутреннего воздуха, tВ = 18ºС;

tН = tС.П. = -43ºС;

αВ – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αВ = 8,7 Вт/м2∙К по табл. 4* [10];

∆tН – нормативный температурный перепад между температурой внутреннего воздуха и температурой на внутренней поверхности ограждения, по табл. 2* [10] для наружной стены ∆tН = 4ºС.

По формуле (1.1):

Для подвала:

Для чердака:

2. Определяем термическое сопротивление теплопередаче стены, перекрытия над холодным подвалом, перекрытия чердачного и окон по условиям энергосбережения.

Сопротивление теплопередаче из условий энергосбережения определяется в зависимости от величины градусосуток отопительного периода.

ГСОП = (tВ - tОТ.П)∙ ZОТ.П. = (18-(-8,6)∙249 = 6623,4

Термическое сопротивление теплопередаче определяем по табл. 1б [10]:

3. Определяем толщину тепловой изоляции для ограждения – наружная стена.

Определяем значение термического сопротивления:

Введем коэффициент r:

Определяем общую толщину наружной стены:

4. Определяем термическое сопротивление ограждающей конструкции-перекрытия над холодным подвалом.

Для того, чтобы определить рассмотрим процесс передачи тепла через ограждение, имеющее в своем составе теплоизолирующее включение.

1) Расчет параллельно тепловому потоку.

Сечение 1 – 1:

Тепловой поток в направлении данного сечения преодолевает сопротивление следующих слоев:

a) железобетон ;

b) воздушная пустота ;

c) железобетон .

Определим термическое сопротивление железобетона:

Термическое сопротивление ограждающей конструкции в данном направлении будет равно:

Сечение 2 – 2:

Тепловой поток в данном сечении преодолевает сопротивление железобетона толщиной с+а+с. Термическое сопротивление данного слоя:

Термическое сопротивление, полученное по характерным сечениям определяется:

2) Расчет перпендикулярно тепловому потоку.

Плоскостями перпендикулярными к направлению потока разобьем конструкцию в характерных зонах сечениями 3 – 3, 4 – 4, 5 – 5. Проходя по 1 и 3 сечению тепловой поток преодолевает сопротивление слоев железобетона м с теплопроводностью Вт/м∙К.

Количество тепла, перемещающееся по среднему слою конструкции преодолевает сопротивление воздушной прослойки и слоя железобетона. Определим коэффициент теплопроводности по сечению 4 – 4:

где .

Термическое сопротивление перпендикулярно тепловому потоку определяется:

.

Термические сопротивления в результате двух этапов расчета не равны между собой. Определяем процент расхождения:

Так как процент расхождения не превышает 25%, то общее приведенное сопротивление конструкции определяется по формуле:

Тогда

Общая толщина подвального перекрытия:

5. Определяем температуры в характерных сечениях ограждения.

см. бланк для расчета распределения температур в наружной стене.

6. Рассчитываем температуру на внутренней поверхности наружного угла.

Выводы по I разделу:

1) Проектное термическое сопротивление теплопередаче:

где r – коэффициент теплотехнической однородности (r = 0,6).

2) Проектная толщина утепляющего слоя:

3) Общая толщина конструкции:

4) Температура на внутренней поверхности ограждения:

5) Температура на внутренней поверхности наружного угла:

II. Расчет воздушного режима эксплуатации ограждений

1. Определяем сопротивление воздухопроницанию наружной стены (по приложению 9 [10]):

2. Определяем требуемое сопротивление воздухопроницанию:

(2.1)

где - нормативное воздухопроницание ограждающей конструкции. Принимаем по табл. 12 [10]. .

- разность давлений между внутренней средой здания и наружного воздуха.

где Н – высота здания, Н = 6∙3=18м;

γ – удельный вес воздуха;

- скорость ветра за самый холодный месяц, м/с.

Отсюда:

3. Определяем удельный поток воздуха, проходящий через наружную стену:

Вывод: действительное сопротивление воздухопроницанию наружной стены соответствует санитарно – гигиеническим нормам

4. Определяем удельный поток воздуха, инфильтрующегося через оконное заполнение. Требуемое термическое сопротивление воздухопроницанию определяется:

где - нормативная воздухопроницаемость оконного заполнения. Определяем по табл. 12 [10]. Для плястиковых переплетов .

∆Р – разность давлений воздуха на внутренней и наружной поверхности, ∆Р = 36,5 Па;

Р0 – разность давлений при которой определяется сопротивление воздухопроницанию, Р0 = 10 Па.

5. Сравниваем термическое сопротивление воздухопроницанию по условиям энергосбережения и требуемое:

, поэтому приняв подбираем конструкцию оконного заполнения. По табл. 14 [5] подбираем заполнение оконного проема, у которого сопротивление воздухопроницанию больше сопротивления воздухопроницанию по условия энергосбережения – двухкамерный стеклопакет из стекла с твердым селективным покрытием и заполнением аргоном .

6. Определяем удельный поток воздуха, проходящий через оконный проем:

Вывод: воздухопроницаемость окна больше, чем воздухопроницаемость стены в 60000 раз.

III. Расчет влажностного режима эксплуатации наружной стены.

1. Определяем возможность конденсации водяных паров на внутренней поверхности ограждения и в районе наружного угла здания.

По известной температуре внутреннего воздуха tВ = 18ºС и относительной влажности в помещении φВ = 40% (сухая зона) определяют максимальную упругость водяных паров ЕВ = 2064 Па (по табл. 10 [5]).

Действительная упругость насыщенный водяных паров:

По известной температуре наружного воздуха tН = -20,70 С и относительной влажности наружного воздуха φН = 81% определяем максимальную упругость водяных паров ЕН = 110 Па.

Действительная упругость насыщенный водяных паров:

Приравнивая действительную и максимальную упругости определим температуру точки росы:

Отсутствием конденсации водяных паров на внутренней поверхности ограждения является условие:

;

2. Определим общее сопротивление паропроницанию ограждения:

(3.1)

Т.к. значения сопротивлений паропроницанию внутреннего и наружного воздуха очень малы, поэтому в расчетах ими пренебрегают.

По формуле (3.1):

3. Определим удельный весовой расход водяных паров через 1 м2 ограждения:

4. Определим зону возможной конденсации в толще ограждения.

Для построения графика определяем максимальную упругость водяных паров и термическое сопротивление паропроницанию.

Результаты расчета сводятся в таблицу.

№ точки

t в характерных сечениях, 0С

Максимальная упругость насыщенных паров Е(tх), Па

Сопротивление паропроницанию RПх, м2∙ч∙Па/мг

обознач

велич.

обозначение

величина

зависимость

значение

1

tВ

18

2064

0

2

τВ

0

3

τ1

2,67

4

τа

2,96

5

τб

3,25

6

τ2

3,54

7

τН

5,54

8

tН

-20,7

110

5,54

Результаты таблицы представим в графическом виде в виде зависимостей.

IV. Расчет теплового режима ограждений.

1. Суммарные потери через ограждающие конструкции определяются по формуле:

где R – термическое сопротивление по условиям энергосбережения соответствующего ограждения конструкции;

F – площадь ограждения;

n – поправочный коэффициент принимаемый в зависимости от положения ограждающей конструкции по отношению к наружному воздуху;

∆Q – добавочные теплопотери;

Результаты расчета приведены в таблице 3.

2. Количество воздуха, проникающего в помещение за счет инфильтрации, определяется:

где - площадь пола помещения, м2

3 (м3∙ч)/м2 – нормируемая кратность воздухообмена в помещении.

Количество тепла, необходимого на нагрев данного объема воздуха определяется:

где - объемная теплоемкость воздуха, составляющая в среднем 1,3 кДж/(м3К);

- расход инфильтрующегося воздуха, м3/ч.

3. Тепловы поступления в помещение определяются:

где 21 Вт/м2 –нормируемые теплопоступления в помещение.


№ помещения

Наименование ограждения

Ориентация по сторонам света

Размеры ограждений, м

Площадь F, м2

Температура внутреннего воздуха, tBºС.

Расчетная разность температур (tB-tH)n

Термическое сопротивление ограждений R0, м2К/Вт

Теплопотери через ограждения Q, Вт

Добавки к теплопотерям

Добавки к теплопотерям ∆Q, Вт

Расчетные теплопотери через ограждения QОГР

Теплопотери по помещению, Вт

Расход тепла на инфильтрацию Qинф

Бытовые тепловыделения, Вт

Результирующие теплопотери помещения

101

жк

НС

С-В

7,00∙3,04

21,28

20

42

2,0

446,9

0,1

44,69

491,59

1993,24

1352,43

623,7

2721,97

НС

Ю-В

5,1∙3,04

15,5

20

42

2,0

325,5

0,05

16,3

341,8

ДО

Ю-В

1,24∙1,57

1,95

20

42

0,54

151,7

0,05

7,59

159,29

НС

Ю-З

2,6∙3,04

7,9

20

42

2,0

165,9

0

0

165,9

НС

Ю-В

2,1∙3,04

6,38

20

42

2,0

133,98

0,05

6,7

140,68

НС

С-З

4,4∙3,04

13,4

20

42

2,0

281,4

0,1

28,14

309,54

ДО

С-З

1,24∙1,57

1,95

20

42

0,54

151,7

0,1

15,17

166,87

ПЛ

-

22,3+7,4

29,7

20

25,2

3,44

217,57

-

-

217,57

105

жк

НС

С-В

7,00∙2,8

19,6

20

42

2,0

411,6

0,1

41,16

452,76

1661,32

1352,43

623,7

2390,05

НС

Ю-В

5,1∙2,8

14,3

20

42

2,0

300,3

0,05

15,02

315,32

ДО

Ю-В

1,24∙1,57

1,95

20

42

0,54

151,7

0,05

7,59

159,29

НС

Ю-З

2,6∙2,8

7,3

20

42

2,0

153,3

0

0

153,3

НС

Ю-В

2,1∙2,8

5,88

20

42

2,0

123,48

0,05

6,17

129,65

НС

С-З

4,4∙2,8

12,3

20

42

2,0

258,3

0,1

25,83

284,13

ДО

С-З

1,24∙1,57

1,95

20

42

0,54

151,7

0,1

15,17

166,87

107

жк

НС

С-В

7,00∙2,98

20,86

20

42

2,0

438,1

0,1

43,81

481,91

2073,02

1352,43

623,7

2801,75

НС

Ю-В

5,1∙2,98

15,2

20

42

2,0

319,2

0,05

15,96

335,16

ДО

Ю-В

1,24∙1,57

1,95

20

42

0,54

151,7

0,05

7,59

159,29

НС

Ю-З

2,6∙2,98

7,75

20

42

2,0

162,75

0

0

162,75

НС

Ю-В

2,1∙2,98

6,26

20

42

2,0

131,46

0,05

6,57

138,03

НС

С-З

4,4∙2,98

13,1

20

42

2,0

275,1

0,1

27,51

302,61

ДО

С-З

1,24∙1,57

1,95

20

42

0,54

151,7

0,1

15,17

166,87

ПТ

-

22,3+7,4

29,7

20

37,8

3,44

326,4

-

-

326,4


Заключение

В результате выполненной работы можно сделать следующие выводы:

1. Наружная капитальная стена с расчетной толщиной 0,35 м удовлетворяет санитарно – гигиеническим требованиям, то есть .

2. Определена толщина утеплителя в трехслойной конструкции стены м, обеспечивающая санитарно – гигиенические условия.

3. Конденсация водяных паров на внутренней поверхности стены на глади, в районе угла отсутствует.

4. Расчетным путем определены температуры и построен график изменения температуры в каждом слое наружной стены.

5. В толще наружной капитальной стены, при температуре наружного воздуха в зимний период, будет иметь место конденсация водяных паров. Для предотвращения конденсации необходимо покрыть внутреннюю поверхность масляной краской за два раза или изопленовыми обоями.

6. Определены теплопотери через ограждающие конструкции угловых помещений жилого здания. Отмечено, что помещения первого и последнего этажей здания имеют большие теплопотери.

Список использованной литературы

1. Богословский В.Н. Строительная теплофизика. – М.: Высшая школа, 1982. – 415 с.

2. Богословский В.Н. Тепловой режим здания. – М.: Стройиздат, 1979. –
248 с.

3. Богословский В.Н., Сканави А.Н. Отопление. – М.: Стройиздат, 1991. – 736 с.

4. Ильинский В.М. Строительная теплофизика. – М.: Высшая школа, 1974. – 317 с.

5. Курицын Б.Н., Осипова Н.Н. Строительная теплофизика: Учеб. пособие. – Саратов: Сарат. гос. тех. ун-т, 2003. – 80 с.

6. Курицын Б.Н. Оптимизация систем теплогазоснабжения и вентиляции. – Саратов: изд-во СГУ, 1992. – 159 с.

7. Отопление и вентиляция жилых зданий. Справочное пособие к СНиП. – М.: Стройиздат, 1990. – 22 с.

8. Расчет и проектирование ограждающих конструкций зданий. Справочное пособие к СНиП. – М.: Стройиздат, 1990. – 239 с.

9. СНиП 23-01-99 Строительная климатология. М.: Госстрой России, 2000.

10. СНиП II – 3 – 79*. Строительная теплотехника. – М.: ЦИТП, 1998. – 32 с.

11. СНиП 2.04.05 – 91*. Отопление, вентиляця и кондиционирование, - М.: ГУП ЦИТП, 1998. – 72 с.

12. ТСН 23-305-99 = Сар О, Энергетическая эффективность в жилых и общественных зданиях. Нормативы по теплозащите зданий. – Саратов: Правительство Саратовской области, 2000. 54 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно