Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Исследование кривых и поверхностей второго порядка

Тип Реферат
Предмет Математика
Просмотров
776
Размер файла
275 б
Поделиться

Ознакомительный фрагмент работы:

Исследование кривых и поверхностей второго порядка

Кафедра высшей математики

Курсовая работа

по линейной алгебре и аналитической геометрии

на тему:

Исследование кривых и поверхностей второго порядка

Дубна, 2002

Оглавление

ВВЕДЕНИЕ

ИССЛЕДОВАНИЕ КРИВОЙ ВТОРОГО ПОРЯДКА

Теоретическая часть

Практическая часть

ВЫВОД

ИССЛЕДОВАНИЕ ФОРМЫ ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Теоретическая часть

Практическая часть

ВЫВОД

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


Введение

Цель

1. Целью данной курсовой работы является исследование кривой и формы поверхности второго порядка. Закрепление полученных теоретических знаний и практических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.

2. Ознакомление с пакетами программ Microsoft® Word и Microsoft® Excel.

Постановка задачи

I. Для данного уравнения кривой второго порядка:

1. Определить тип данной кривой с помощью инвариантов.

2. Привести уравнение кривой к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.

3. Найти фокусы, директрисы и ассимптоты данной кривой (если они есть).

4. Построить каноническую систему координат и данную кривую в общей системе координат.

II. Для данного канонического уравнения поверхности второго порядка:

1. Исследовать форму поверхности методом сечений плоскостями, построить линии, полученные в сечениях;

2. Построить поверхность в канонической системе координат.

Исследование кривой второго порядка

Теоретическая часть

Пусть кривая Г задана в декартовой прямоугольной системе координат xOyуравнением:

. (1.1)

Если хотя бы один из коэффициентов отличен от нуля, то кривую Г называют кривой второго порядка.

Теорема 1. Для произвольной кривой второго порядка Г существует такая декартова прямоугольная система координат XO¢Y, что в этой системе кривая Г имеет уравнение одного из следующих канонических видов:

1) , а ³b> 0 — эллипс,

2) — мнимый эллипс,

3) — две мнимые пересекающиеся прямые

(точка),

4) — гипербола,

5) — две пересекающиеся прямые,

6) — парабола,

7) — две параллельные прямые,

8) — две мнимые параллельные прямые,

9) — две совпадающие прямые.

В этих уравнениях a,b,p положительные параметры.

Систему координат XO¢Y назовем канонической системой координат, а систему координат xOy — общей системой координат.

Классификация кривых второго порядка

В зависимости от значения инварианта принята следующая классификация кривых второго порядка:

· если кривая второго порядка Г называется кривой эллиптического типа.

· если кривая второго порядка Г называется кривой параболического типа.

· если кривая второго порядка Г называется кривой гиперболического типа.

Кривая второго порядка Г называется центральной, если . Кривые эллиптического и гиперболического типа являются центральными кривыми.

Центром кривой второго порядка Г называется такая точка плоскости, по отношению к которой точки этой кривой расположены симметрично парами. Точка является центром кривой второго порядка, определяемой уравнением (1.1), в том и только в том случае, когда ее координаты удовлетворяют уравнениям:

(2.1)

(2.1)

Определитель этой системы равен . Если , то система имеет единственное решение. В этом случае координаты центра могут быть определены по формулам:

, . (2.2)

Из теорем 1 и 2 получается следующая классификация кривых второго порядка с помощью инвариантов:

1) эллипс

2) мнимый эллипс

3) две мнимые пересекающиеся прямые (точка)

4) гипербола

5) две пересекающиеся прямые (2.3)

6) парабола

7) две параллельные прямые

8) две мнимые параллельные прямые

9) две совпадающие прямые

Практическая часть

Дано:

Определить тип кривой с помощью инвариантов в зависимости от β:

Вычислим инварианты:

1. Если , то имеем линии эллиптического типа

Этих β будет эллипс

При

При

2. Если то пишем линии параболического типа, при этом, чтобы была парабола

3. Если , то получаем линии гиперболического типа.

При гипербола

При корней нет, т.е. таких двух пересекающихся прямых, не существует.

Значение
Тип кривойМнимая точкаТочкаЭллипсПараболаГипербола

Исследуем кривую при β=0 , тогда получим:

Сперва повернём на угол φ:


Найдём угол φ,такой чтобы коэффициент при был равен 0:

Пусть

Сгруппируем члены уравнения и дополним до полного квадрата:

Произведём перенос системы координат:

координаты нового центра O системы координат

т.е. мы правильно определили каноническое уравнение

Определим фокус эллипс.

Расстояние между найдём по:

В системе координат

Эксцентрический эллипс

Директрисы

Вывод

Исследовав общее уравнение кривой второго порядка и приведя его к каноническому виду, мы установили, что данная кривая — эллипс. Мы получили каноническое уравнение гиперболы при помощи преобразований параллельного переноса и поворота координатных осей.


Исследование формы поверхности второго порядка

Теоретическая часть

Поверхностью второго порядка S называется геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида:

,

где по крайней мере один из коэффициентов отличен от нуля.

Уравнение (3.1) называют общим уравнением поверхности второго порядка S, а систему координатOxyz называют общей системой координат.

Теорема: Для произвольной поверхности S, заданной общим уравнением существует такая декартова прямоугольная система координат что в этой системе поверхность S имеет уравнение одного из следующих семнадцати канонических видов.

1) — эллипсоид,

2) — мнимый эллипсоид,

3) — однополостный гиперболоид,

4) — двуполостный гиперболоид,

5) — конус,

6) — мнимый конус (точка),

7) — эллиптический параболоид,

8) — гиперболический параболоид,

9) — эллиптический цилиндр,

10) — мнимый эллиптический цилиндр,

11) — две мнимые пересекающиеся плоскости (ось

O'Z),

12) — гиперболический цилиндр,

13) — две пересекающиеся плоскости,

14) — параболический цилиндр,

15) — две параллельные плоскости,

16) — две мнимые параллельные плоскости,

17) — две совпадающие плоскости (плоскость XOZ).

В выше перечисленных уравнениях a, b, c, p­— положительные параметры. Систему координат называют канонической.

Исследование формы поверхности второго порядка методом сечения плоскостями

Если дано каноническое уравнение поверхности S, то представление о поверхности можно получить по форме линий пересечения ее плоскостями:

Z = h— параллельными координатной плоскости XO'Y,

X = h— параллельными координатной плоскости YO'Z,

Y = h— параллельными координатной плоскости XO'Z.

Практическая часть

Дано:

;

Это эллипсоид в прямоугольной декартовой системе координат Oxyz, где оси OX, OY, OZ — оси симметрии.

1. Рассмотрим линии плоскостями Z=h (h=const):

(1)

Плоскость Z=h параллельна плоскости Oxy.

Уравнения проекций на Oxy имеют вид:

Если , то , и тогда поделим обе части уравнения на , получим:

Это уравнение эллипсов с полуосями , ; увеличивающиеся с уменьшением , центр эллипса (0;0;h)

При различных h имеем:

Если , тогда и значит линии удовлетворяющих уравнению(1) нет.

2. Рассмотрим полученные в сечениях эллипсоида плоскостями X=h:

(2)

Уравнение проекций на YOZ.

Это уравнение эллипсов с полуосями , ;

Если , то a=3, b=2, и

Если , тогда мы получаем семейство эллипсов:

, ;

, ;

Если , тогда — это уравнение точки с координатами (h;0;0).

Если , тогда и значит линии удовлетворяющих уравнению (2) нет.

3. Рассмотрим полученные в сечениях эллипсоида плоскостями Y=h:

(3)

Уравнения эллипсов, проекций на YOZ и имеют центры (0;h;0).

Полуоси ,

Если , тогда , уравнение точек с координатами (0;h;0).

Если , тогда мы получаем семейство эллипсов:

, ;

, ;

Если , тогда и значит линии удовлетворяющих уравнению (3) нет.

Построим однополостный гиперболоид

в канонической системе координат проанализировав уравнение поверхности и результаты исследования методом сечения ее плоскостями.

Вывод

Проанализировав уравнение эллипсоида , получили некоторые представления о форме эллипсоида.

Из уравнения следует, что оси OX, OY, OZ — оси симметрии, плоскости XOY, YOZ, XOZ — плоскости симметрии.

Рассекая поверхность плоскостями y=h,z=h,x=h, в сечениях имеем эллипсы, наибольшие из которых получаются в плоскостях x=0, y=0, z=0, полуоси их уменьшаются с увеличением , вершины эллипсов имеют координаты по оси X; по оси Y; по оси Z.

Список используемой литературы

1. Копылова Т. В. Конспект лекций по линейной алгебре;

2. Копылова Т. В. Линейная алгебра. — Дубна: Международный университет природы, общества и человека «Дубна», 1996;

3. Ефимова Л. В., Демидович Б. П. Линейная алгебра и основы математического анализа. — М: Наука, 1993.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную работу по Теоретической механике. М-08023

Контрольная, Теоретическая механика

Срок сдачи к 30 дек.

только что

Практическое задание

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

1 минуту назад

Лабораторная

Лабораторная, технология конструкционных материалов

Срок сдачи к 1 янв.

3 минуты назад

Тестирование по психологии

Тест дистанционно, Психология и педагогика

Срок сдачи к 31 дек.

3 минуты назад

создание ролика

Другое, Право

Срок сдачи к 25 дек.

4 минуты назад

Контрольная, Логика

Контрольная, Логика

Срок сдачи к 27 дек.

4 минуты назад

1. решить файл перечень заданий exel

Решение задач, Информационные технологии

Срок сдачи к 28 дек.

4 минуты назад

Пересечение криволинейных поверхностей плоскостью треугольника АВС

Решение задач, Начертательная геометрия

Срок сдачи к 10 янв.

6 минут назад

Решить задачу

Решение задач, Теоретическая механика

Срок сдачи к 26 дек.

7 минут назад

выполнить задания

Решение задач, Актуальные проблемы права интеллектуального собственности

Срок сдачи к 28 янв.

8 минут назад

Химия

Презентация, Химия

Срок сдачи к 25 дек.

8 минут назад

Нужен визуалмейкер для моих фоток

Другое, Фотография

Срок сдачи к 18 февр.

9 минут назад

Органихзация рекламного агенства

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

10 минут назад

Тема: имидж современного руководителя

Курсовая, менеджмент сфере культуры и искусства

Срок сдачи к 26 дек.

11 минут назад

Практика в уголовном розыске

Отчет по практике, Уголовный процесс

Срок сдачи к 26 дек.

11 минут назад

Нужно решить 30 тестов по экономике

Тест дистанционно, Экономика

Срок сдачи к 5 февр.

11 минут назад

президент рф

Реферат, Основы российской государственности

Срок сдачи к 25 дек.

11 минут назад

Практическая работа по дисциплине «Информационное обеспечение логистических процессов»

Другое, Операционная деятельность в логистике

Срок сдачи к 26 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно