Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Лоренцева функция расстояния и причинность

Тип Реферат
Предмет Математика
Просмотров
1371
Размер файла
46 б
Поделиться

Ознакомительный фрагмент работы:

Лоренцева функция расстояния и причинность

A.Н. Романов, Омский государственный университет, кафедра математического моделирования

Цель данной работы состоит в доказательстве следующего утверждения (далее через cl обозначаем замыкание, а через int - внутренность множества, остальная терминология взята из [1, 2]):

Теорема. Различающее пространство-время (M, g) является глобально гиперболическим тогда и только тогда, когда удовлетворяет условию конечности расстояния для всех .

Здесь через C(M, g) обозначен класс лоренцевых метрик на многообразии M, глобально конформных метрике g: для некоторой гладкой функции .

При доказательстве теоремы будем использовать следующее утверждение (см [1], теорема 3.30):

Лемма. Пространство-время (M, g) глобально гиперболично тогда и только тогда, когда когда оно сильно причинно и удовлетворяет условию конечности расстояния для всех .

Доказываемая теорема является модификацией данной леммы: условие сильной причинности ослаблено до условия различаемости пространства-времени (M, g).

Так как любое глобально гиперболическое пространство-время всегда является и различающим, то первая часть часть теоремы сразу вытекает из леммы: (M, g) глобально гиперболично различающее и (по лемме) удовлетворяет условию конечности расстояния для всех .

Таким образом, остается доказать обратное утверждение: условие конечности расстояния и различаемость (M, g) влекут его глобальную гиперболичность. В действительности же достаточно доказать, что (M, g) удовлетворяет какому-нибудь условию причинности, являющемуся не слабее условия сильной причинности пространства-времени (M, g). Тем самым мы покажем сльную причинность, а учитывая лемму, и глобальную гиперболичность (M, g). В качестве такого условия выберем причинную простоту (означающую, что пространство-время различающее, а причинное прошлое и будущее любой точки - замкнутые подмножества замкнуты в ).

Тем самым доказательство теоремы сводится к доказательству следующего утверждения: различаемость пространства-времени (M, g) и условие конечности расстояния для всех метрик влекут за собой замкнутость множеств J+p, J-q для всех

Покажем, что множество J+p замкнуто для любой точки (замкнутость J-p доказывается аналогично).

Допустим обратное: точка Возьмем в I+q произвольную точку r. Покажем, что множество не пусто. Так как , то - последовательность точек , сходящаяся к q (сходимость в исходной топологии многообразия M). Так как , а множество I-r открыто (см. [1], лемма 2.5), то для достаточно больших , т.е.qn<<r. Тогда из соотношений получаем: p<<qn т.е. Таким образом, имеем: множество не пусто.

Получаем: (т.к. ).

Покажем далее, что непустое замкнутое в M множество не является компактным (наглядно это можно представлять как существование какой-то "выброшенной" из M области, в которую "упираются" некоторые причинные кривые, идущие из p в будущее или из r в прошлое).

Вернемся к рассмотренной выше последовательности (можно считать, что ). Так как , то для любого существует причинная кривая , идущая из p в qn. Продолжим до непродолжаемой причинной кривой. Любая окрестность точки q содержит все точки qn, начиная с некоторого n. А так как , то q является точкой накопления последовательности причинных непродолжаемых кривых Отсюда следует (см.[1] предложение 2.18), что существует причинная непродолжаемая кривая , являющаяся предельной для последовательности и такая, что Выберем параметризацию так, что и , причем уменьшение параметра t кривой соответствует движению по ней в прошлое.

Рассмотрим часть кривой , идущую в прошлое от точки . Заметим, что для любой точки выполняется соотношение: . Действительно, т.к. -предельная кривая последовательности то существует подпоследовательность такая, что для любой точки каждая ее окрестность Ua пересекает все, за исключением конечного числа, кривые из . Взяв точки rm такие, что.: , получим сходящуюся к a последовательность . Если выполнено еще соотношение , то получим, что . В данном случае включение выполняется всегда. В самом деле, если , то это означает, что кривая (вместе с кривыми ) покинула область cl(J+p). Однако выйти из может лишь через точку p, так как все "фокусируются" в p (по их определению), а - предельная кривая для последовательности . Но такого быть не может, так как это означало бы существование отрезка (лежащего на кривой ), соединяющего точки p и q и являющегося частью причинной кривой (-причинна), что противоречит выбору точки .

Таким образом, мы показали, что . Ясно, что выполнено также включение (т.к. из , т.е. ) В результате имеем: . Рассмотрим последовательность точек an, где . Если бы множество было компактным, то бесконечная последовательность должна иметь хотя бы одну предельную точку. Покажем, что такой точки нет. Допустим обратное: пусть существует точка x и подпоследовательность такие, что любая окрестность Ux точки x содержит все точки am, начиная с некоторого m.

Заметим сначала, что не существует точки , обладающей следующим свойством: любая окрестноть точки z целиком содержит кривую для некоторого , так как это бы означало, что при , т.е. существование у кривой концевой точки z, чего быть не может вследствие того, что непродолжаема.

Следовательно, существует малая окрестность Ux точки x такая, что кривая , входя в нее, через некоторое время обязательно ее покидает, после чего опять в нее входит (т.к. ), и т.д. Построим покрытие кривой достаточно малыми окрестностями ее точек. Обратим внимание на то, что все кривые , за исключением конечного числа, проходят внутри любой окрестности кривой , не выходя из нее (разве что покидают ее, когда "кончается"). То есть "повторяют" движение .

Таким образом, кривые бесконечное число раз покидают Ux и возвращаются в нее, следуя за (прилегая к ней сколь угодно близко). При этом кривые не могут пройти через точку p, так как их "сопровождает" кривая , которая в таком случае так же должна была бы пройти через p, как предельная для последовательности , чего, как упоминалось выше, быть не может.

В результате получили, что ни для какого конечного значения параметра , т.е. кривые не проходят через точку p. Невозможен также случай, когда при , так как это означало бы наличие у кривых концевой точки, чего быть не может, так как -непродолжаемые кривые. Но по выбору кривые выходят из точки p. Следовательно, мы получили противоречие, означающее, что наше предположение о существовании предельной точки у бесконечной последовательности неверно. А зто означает, что множество некомпактно.

Пусть далее h - вспомогательная (геодезически) полная положительно определенная метрика на M, а - риманова функция расстояния, индуцированная на M метрикой h. По теореме Хопфа-Ринова для римановых многообразий из полноты (M, d0) следует, что все подмножества M, ограниченные относительно d0, имеют компактные замыкания.

Следовательно, из того, что множество некомпактно, заключаем, что множество неограничено (относительно d0). Отсюда следует, что для каждого n можно выбрать так, что d0(p, pn)<n. Возьмем точки и , связанные условием: , и покажем, что существует конформный множитель такой, что .

Так как , т.е. существует направленная в будущее времениподобная кривая, идущая из в . Выберем параметризацию кривой так, что . Обозначим через гладкую функцию, обладающую следующими свойствами: , если и длина в метрике больше n: . Определим (корректность этого определения следует из того, что для каждого самое большое лишь один из сомножителей отличен от единицы). Получаем:

Тогда из соотношений и обратного неравенства треугольника следует:

(первое слагаемое больше n, второе больше нуля).

Так как это неравенство справедливо для всех n>1, то получаем следующее соотношение:

Таким образом, найдена лоренцева метрика , глобально конформная метрике g, в которой не выполняется условие конечности расстояния, что противоречит исходному условию теоремы. Это означает, что наше предположение о незамкнутости множества J+p неверно. Следовательно, пространство-время (M, g) является причинно простым, а значит, и сильно причинным, что с условием конечности расстояния для всех означает (по лемме) его глобальную гиперболичность.

В заключение заметим, что условия различаемости (M, g) и конечности расстояния для всех влекут также непрерывность лоренцевой функции расстояния в любой метрике , так как глобальная гиперболичность остается при всех (конформные преобразования не меняют причинную структуру), а в любом глобально гиперболическом пространстве-времени лоренцева функция расстояния непрерывна ([1], следствие 3.7).

Список литературы

Бим Дж., Эрлих П. Глобальная лоренцева геометрия. M.: Мир, 1985.

Пенроуз Р. Структура пространства-времени. М.: Мир, 1972.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно