Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Стійкість системи лінійних алгебраїчних рівнянь

Тип Реферат
Предмет Математика
Просмотров
1595
Размер файла
85 б
Поделиться

Ознакомительный фрагмент работы:

Стійкість системи лінійних алгебраїчних рівнянь

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

КАФЕДРА ІНФОРМАТИКИ

Курсова робота

по чисельним методам

на тему:”Стійкість СЛАР”

Суми 2005


Зміст

1. Постановка задачі.

2. Теоретична частина.

а) характеристичний многочлен

в) метод Левeр’є

б) критерій Калашнікова

Текст програми

Приклад

Список літератури


Постановка задачі

Дана система лінійних алгебраїчних рівнянь. Необхідно дослідити її на стійкість. Знайти характеристичний многочлен методом Левур’є. Зробити відповідні висновки щодо її стійкості.


Теоретична частина

Характеристичний многочлен

Нехай дана квадратна матриця А=[aij]. Розглянемо лінійне перетворення

у=Ах (1)

де х,у n-вимірні вектори (стовпові матриці) деякого, взагалі кажучи, комплексного n-вимірного простору.

Ненульовий вектор називається власним вектором даної матриці (або визначуваного нею лінійного перетворення), якщо в результаті відповідного лінійного перетворення цей вектор переходить в колінеарний йому, тобто якщо перетворений вектор відрізняється від початкового тільки скалярним множником.

Інакше кажучи, вектор х¹0 називається власним вектором матриці А, якщо ця матриця переводить вектор х у вектор

Ах=lx (2)

Число l, стоїть в рівності (2), називається власним значенням, або характеристичним числом, матриці А, відповідним даному власному вектору х.

Теорема 1. В комплексному векторному просторі кожне лінійне перетворення (матриця) має щонайменше один дійсний або комплексний власний вектор.

Доведення. нехай А ¾ матриця лінійного перетворення. Власні вектори матриці А є ненульовими розв'язками матричного рівняння

Ах=lх

або

(А- lЕ)х=0 (3)

де матриця (А- lЕ) називається характеристичною матрицею. Рівняння (3) представляє собою лінійну однорідну систему, яка має ненульові розв'язки тоді і лише тоді, коли визначник системи рівний нулю, тобто повинна виконуватися умова

det(А- lЕ)=0. (4)

Визначник (4) називається характеристичним (віковим) визначником матриці А, а рівняння (4) називається характеристичним (віковим) рівнянням матриці А. В розгорненому вигляді характеристичне рівняння (4) запишеться таким чином:

а11-l а12 ... а1n

а21 а22-l ... а2n =0

an1 an2 ann-l

або

ln-d1ln-1+d2ln-2- ...+(-1)n-1dn-1l+(-1)ndn=0. (5)

Поліном, що стоїть в лівій частині рівняння (5), називається характеристичним поліномом матриці А. Коефіцієнти його di(i=1,2,…,n) визначаються за наступними правилами. Коефіцієнт d1=.

Це число називається услід матриці А і позначається так: d1=Sp А. Коефіцієнт d2 є сума всіх діагональних мінорів другого порядку матриці А. Взагалі, коефіцієнт dk є сума всіх діагональних мінорів k-го порядку матриці А. Зрештою, вільний член dn рівний визначнику матриці А:

dn=det А.

Характеристичне рівняння (5) є алгебраїчне рівняння n-ої степені відносно l і, отже, як доводиться в алгебрі, має щонайменше один дійсний або комплексний корінь. Нехай l1 l2,… lm(m£n) — різні корені рівняння (5). Ці корені називаються власними значеннями, або характеристичними числами, матриці А, а сукупність всіх власних значень називається спектром матриці А. Візьмемо який-небудь корінь l=lj і підставимо його в рівняння (4). Тоді будемо мати (А-l)х=0 або, в розгорненому вигляді

(а11-lj112х2+…+а1nxn=0

а21х1+(а22-lj2+ ...+а2nxn=0

an1х1+an2х2+ ...+(ann-lj)xn=0. . . . . . . . . . . . (6)

Оскільки визначник системи (6) det(А-l)=0, то ця система явно має ненульові розв'язки, які і є власними векторами матриці А, відповідними власному значенню lj. Якщо ранг матриці А-l рівний r(r<n), то існує k=n r лінійно незалежних власних векторів

х(1j), х(2j) ...,х(kj)

відповідаючих кореню lj. Теорема доведена.


Метод Левер’є

Відомо багато інших способів одержання характеристичного многочлена.

Розглянемо метод Левер’є, що дозволяє вирішити проблему власних значень, в основу якого покладено обчислювання слідів степенів матриці А. Вказаний метод потребує більшої кількості операцій, ніж метод Данилевського, але зовсім не чутливий до частинних особливостей матриці, зокрема ”провалів” проміжних визначників.

Нехай характеристичний поліном матриці А записано у вигляді (5) де

l1, l2, l3, .........ln – його корені, серед яких деякі можуть бути рівні. Позначимо

(7)

Суми , k=1-n степенів коренів многочлена зв’язані з коефіцієнтами рівняння ( 5) формулами Ньютона

k= 1,…..,n (8)

Якщо обчислити сліди ,……., матриць , ….., ,то з (8) можна послідовно обчислити коефіцієнти

Покажемо, як визначаються числа :

Оскільки матриця має своїми власними значеннями числа ,… то

.

Таким чином, процес обчислення зводиться до послідовного обчислення степенів матриці А, обчислення їх слідів (суми діагональних елементів ) і, нарешті , до розв’язання рекурентної системи (8). Обчислення n степенів матриці А (в останньої матриці (А) треба знайти тільки діагональні елементи) потребує великої кіолькості одноманітних операцій , які легко реалізуються за доомогою ПВМ. Кількість необхідних за методом Левер’є множень дорівнює ½(-1)(2-2++2) )

Зазначимо, що при обчисленні степенів матриці корисно здійснювати контроль за допомогою стовпця , що складається із сум елементів кожного рядка матриці А .

Результат множення матриці А на цей стовпець повинен збігатися з аналогічним стовпцем матриці . Дійсно, нехай– стовпець сум матриці А :- стовпець сум матриці . Нехай U (1,2….1). Тоді

=AU; =U =A

Очевидно сказане вірне й для інших степенів.

Визначивши з допомогою вказаного методу коефіцієнти характеристичного полінома вигляду (5), знаходимо його кореня, які є шуканими власними значеннями.

Реалізація методу на прикладі.

Знайти характеристичний многочлен методом Левур’є.


1 -1 1

А = 4 6 -1

4 4 1

У відповідності із методом Левер’є будуємо степені (к=2,3)

1 -1 1 1 -1 1 1 -3 3

= 4 6 -1 * 4 6 -1 = 24 28 -3

4 4 1 4 4 1 24 24 1


1 -1 1 1 -3 3 1 -7 7

= 4 6 -1 * 24 28 -3 = 124 132 -7

4 4 1 24 24 1 124 124 1

Звідси

=1+6+1=8;

=1+28+1=30;

=1+132+1=134

Відповідно до формул (8) маємо

=8

1/2(30-8*8)=-17

1/3(134-8*30-17*8)=10

Згідно методу дістанемо


Текст програми

program leverie;

uses wincrt;

type matr=array[1..10,1..10] of real;

mas=array[1..10] of real;

var n,i,j,k,l,g,v:integer;

p,s:mas;

a,b,c:matr;

stiykist:real;

procedure mnogmatr(a,b:matr;n:integer; var c:matr);

begin

for i:=1 to n do

for j:=1 to n do

c[i,j]:=0;

for k:=1 to n do

for i:=1 to n do

for j:=1 to n do

begin

c[k,i]:= c[k,i]+a[j,i]*b[k,j];

end;

end;

begin

writeln('vvedit rozmirnict matrici n=');

readln(n);

writeln('vvedit koeficienti matrici');

for i:=1 to n do

for j:=1 to n do

begin

write('a[',i,',',j,']=');

readln(a[i,j]);

end;

for i:=1 to n do

for j:=1 to n do

c[i,j]:=a[i,j];

for i:=1 to n do

s[1]:=s[1]+a[i,i];

p[1]:=s[1];

for l:=2 to n do

begin

for i:=1 to n do

for j:=1 to n do

b[i,j]:=c[i,j];

mnogmatr(a,b,n,c);

for j:=1 to n do

s[l]:=s[l]+c[j,j];

for k:=1 to l do

p[l]:=p[l]-p[k]*s[l-k];

p[l]:=(s[l]+p[l])/l;

end;

writeln('haracteristichniy mnogochlen');

g:=n; v:=0;

repeat

write(p[g]:2:3,'*l^',v,'+');

g:=g-1; v:=v+1;

until g=0;

writeln('-l^',v,'=0');

for i:=1 to n do

stiykist:=stiykist+abs(p[i]);

if stiykist>1 then writeln('sistema ne stiyka') else writeln('sistema stiyka');

end.


Приклад

Перевірити на стійкість систему Аx=B


-0.77 -0.44 0.21 -0.18 -1,24

А= 0.45 1.23 0.06 0 x= В = 0,88

0.26 0.34 -1.11 0 -0,64

0.05 -0.26 0.34 -1.12 1,17

За допомогою програми будуємо характеристичний многочлен, за яким ця ж програма визначає стійкість системи характеристичний многочлен –

l4 + 1.77l3 - 0.598l2 - 2.306l - 0.949 = 0.


Список літератури

1. Я.М. Григоренко, Н.Д. Панкратова «Обчислювальні методи» 1995р.

2. В.Д. Гетмнцев «Лінійна алгебра і лінійне програмування» 2001р.

3. Д. Мак-Кракен, У. Дорн «Программирование на ФОРТРАНЕ» 1997г


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно