Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Расчет показателей надежности простейшей системы электроснабжения вероятностными методами

Тип Реферат
Предмет Математика
Просмотров
1531
Размер файла
59 б
Поделиться

Ознакомительный фрагмент работы:

Расчет показателей надежности простейшей системы электроснабжения вероятностными методами

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ

Кафедра: «Электроснабжение железнодорожного транспорта»

Дисциплина: «Основы теории надёжности»

Курсовая работа

«Расчет показателей надежности простейшей системы электроснабжения вероятностными методами»

Выполнил:

студент группы ЭНС-04-2

Иванов А. К.

Проверил:

канд. техн. наук, доцент

Герасимов Л. Н.

Иркутск 2008


Введение

Термины и определения, используемые в теории надежности, регламентированы ГОСТ 27.002-89 «Надежность в технике. Термины и определения».

Надежность – свойство объекта выполнять заданные функции, сохраняя во времени и в заданных пределах значения всех эксплуатационных параметров.

Надежность объекта характеризуется следующими основными состояниями и событиями:

· Исправность – состояние объекта, при котором он соответствует всем требованиям, установленным нормативно-технической документацией.

· Работоспособность – состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения основных параметров, установленных НТД.

· Предельное состояние – состояние объекта, при котором его применение (использование) по назначению недопустимо или нецелесообразно.

· Повреждение - событие, заключающееся в нарушении исправного состояния объекта при сохранении его работоспособного состояния.

· Отказ – событие, заключающееся в нарушении работоспособного состояния объекта.

· Критерий отказа – отличительный признак или совокупность признаков, согласно которым устанавливается факт возникновения отказа.

Для некоторых объектов предельное состояние является последним в его функционировании, т.е. объект снимается с эксплуатации, для других – определенной фазой в эксплуатационном графике, требующей проведения ремонтно-восстановительных работ. В связи с этим объекты могут быть разделены на два класса:

· невосстанавливаемые, для которых работоспособность в случае возникновения отказа не подлежит восстановлению, или по каким-либо причинам нецелесообразна;

· восстанавливаемые, работоспособность которых может быть восстановлена, в том числе и путем замены элементов.

К числу невосстанавливаемых объектов можно отнести, например, электронные и электротехнические детали (диоды, сопротивления, конденсаторы, изоляторы и другие элементы конструкций). Объекты, состоящие из многих элементов, например, трансформатор, выключатель, электронная аппаратура, являются восстанавливаемыми, поскольку их отказы связаны с повреждениями одного или нескольких элементов, которые могут быть отремонтированы или заменены. В ряде случаев один и тот же объект в зависимости от особенностей, этапов эксплуатации или назначения может считаться восстанавливаемым или невосстанавливаемым.

Введенная классификация играет важную роль при выборе моделей и методов анализа надежности.

Надежность является комплексным свойством, включающим в себя, в зависимости от назначения объекта или условий его эксплуатации, ряд

Составляющих (единичных) свойств, в соответствии с ГОСТ 27.002-89:

· безотказность;

· долговечность;

· ремонтопригодность;

· сохраняемость.

Безотказность – свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность – свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

Сохраняемость – свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

В зависимости от объекта надежность может определяться всеми перечисленными свойствами или частью их.

Наработка – продолжительность или объем работы объекта, измеряемая в любых неубывающих величинах (единица времени, число циклов нагружения, километры пробега и т. п.).

Показатель надежности количественно характеризует, в какой степени данному объекту присущи определенные свойства, обусловливающие надежность.


Задание на расчёт

Система электроснабжения, представленная на рис.1, включает в себя два энергорайона, питающихся от одного источника Г. Второй энергорайон получает питание по воздушной ЛЭП.

Энергорайон №1

Энергорайон №2

Рис. 1. Схема системы электроснабжения


Первый энергорайон подключен через две подстанции А и Б, соединенные параллельно по низкой стороне. Каждая подстанций способна обеспечить питание данного энергорайона, поэтому нарушение электроснабжения наступает только при одновременном обесточивании подстанций А и Б.

Второй район имеет одну подстанцию В и отключается при всех отказах, ведущих к обесточиванию этой подстанции.

Требуется найти аналитическим методом и методом статистических испытаний (методом Монте-Карло)

· вероятность безотказной работы (показатель безотказности) системы, зная вероятности безотказной работы отдельных ее элементов

· абсолютную и относительную погрешности оценки искомого показателя надежности статистическим методом при разном числе испытаний.

Исходные данные

По результатам испытаний, или обработки статистики, получены вероятности

РГ = 0.95; РТ = 0.985; РВЛ = 0.89;

Так же определены вероятности безотказной работы трансформаторов подстанций

РА = РБ = РВ = 0.96.

Расчёт надёжности

Безотказная работа рассматриваемой части системы электроснабжения будет тогда, когда в соответствии с принятыми условиями в работоспособном состоянии находятся

· все подстанции А и Б и В,

· одна из подстанций А или Б, и подстанция В.

Одновременное обесточивание подстанций А и Б, или обесточивание подстанции В, так же как и одновременное обесточивание всех трех подстанций является отказом системы.

Для решения задачи требуется знать вероятности обесточивания подстанций. Подстанции обесточиваются, если повреждается (выходит из работы) хотя бы один из элементов системы в цепи, соединяющей соответствующую подстанцию (А и Б, или В) с источником генерируемой мощности, а также при отказе самого источника Г , или устройств подстанции.

Вероятности обесточивания подстанций могут быть вычислены по данным о надежности элементов цепи соединения, либо могут быть получены в результате обработки статистики (опытных данных) о функционировании подстанций в прошлом. Так, если за K лет собрана статистика о числе случаев обесточивания nj каждой j- ой подстанции и длительностях пребывания τi их в таком состоянии при i-ом обесточивании (i = 1.. nj ), то можно определить среднее время пребывания подстанций в обесточенном состоянии - τoi по формуле

τoi = , {часгод} (1)

Соответственно, среднее время пребывания подстанций в работоспособном состоянии T0j определиться по формуле

T0j = Tгод - τoi , (2)

где T0j - календарное число часов в расчетном периоде – в данном случае, это один расчетный год, равный 8760 час.

Параметры T0j и τoi можно использовать для определения других показателей надежности подстанции. Так, вероятность безотказной работы подстанции вычисляется по формуле

Pj = T0j / Tгод , , здесь j = {Г, Т, А, Б, ВЛ, В} (3)

Определив по заданной статистике значения Pj,, рассчитаем функцию надежности системы в целом, которая, как показатель безотказности, соответствует вероятности ее безотказной работы.


Аналитический метод

Из большого числа применяющихся аналитических методов воспользуемся вероятностными, основанными на теоремах сложения и умножения для групп совместных и несовместных событий. В соответствии с этими теоремами, на первом этапе решения данной задачи определяются вероятности бесперебойного электроснабжения каждой из подстанций по вероятностям безотказной работы элементов, образующих последовательные цепочки связей подстанции с источником питания Г. Допустим, что по результатам испытаний, или обработки статистики, получены эти вероятности.

По вероятностям безотказной работы элементов из исходных данных найдём вероятности работоспособного состояния Vj для каждой из подстанций по формулам:

VА

=

РГ . РТ . РА

=

0.95 . 0.985 . 0.96.

=

0.898

VБ

=

РГ . РТ . РБ

=

0.95 . 0.985 . 0.96.

=

0.898

VВ

=

РГ . РТ . РВ . РВЛ

=

0.95 . 0.985 . 0.96 . 0.89

=

0.800

Полученные результаты показывают, что вероятность работоспособного состояния для подстанции В ниже, чем для А или Б, так как в цепочке связи от Г к В имеется дополнительный элемент - ВЛ, - надежность которого отражается на состоянии подстанции В. Подстанции А и Б находятся в одинаковых условиях , поэтому VА = VБ.

По полученным значениям VА, VБ, VВ вычисляются вероятности безотказного электроснабжения энергорайонов - V№1 и V№2 . Для энергорайона №1 схема замещения по надежности показана на рис. 2.

А


Для данной схемы вероятность V№1 определиться как:

V№1 = РГ .РТ .(1-(1- РА)(1- РБ)) = 0.95 .0.985 .(1-(1- 0.96)(1- 0.96)) = 0 .934.

Для энергорайона №2 схема замещения по надежности линейна, поэтому

V№2 = VВ = 0.8.

Вероятность безотказной работы системы в целом определиться в соответствии с теоремой умножения для совместных событий

Vsys = V№1 . V№2 = 0.934 ··0.8 = 0.7472.

Метод статистических испытаний

Для решения данной задачи методом Монте-Карло предполагается использовать датчик случайных чисел v с равномерным распределением в интервале [0..1]. Эти числа сравниваются со значениями VА , VБ, VВ . Сформулируем решающее правило:

если значение случайного числа v не больше вероятности работоспособного состояния каждой из подстанций

v Vj , , j { А, Б, В }, (4)

то соответствующая подстанция находится в рабочем состоянии, иначе – в обесточенном состоянии.

На этом принципе строятся «испытания» по оценке состояний системы. Если в результате разыгрывания «состояний подстанций» отказов в электроснабжении не будет, то испытание признается положительным, в противном случае – отрицательным. Вероятность безотказной работы системы Usys в этом методе определяется по формуле:

Usys = N+/ N = 1 - N-/ N , (5)

где N – общее число испытаний, N+ - число положительных, N- - число отрицательных испытаний, N = N+ + N- .

Результат каждого испытания удобно представить значением двоичной (бинарной) переменной bj , принимающей значение 1, если выполнен критерий (4) и 0 в ином случае:

если vVj то bj = 1 иначе bj = 0.

Из рис. 1 и выражений (4) и (5) следует:

bsys = (bA+bБbВ , (6)

где bsys состояние системы.

Тогда, после N испытаний, значение N+ можно определить как

N+

В таблице №1 показана реализация данной методики (подготовлена в Excel) и приведены результаты разыгрывания случайных состояний системы методом Монте-Карло при числе испытаний N = 10.

По данным из таблицы №1 получаем статистическую оценку вероятности работоспособного состояния системы: число значений bsys = 0 равно трем, то есть

N- = 3, N+ = 7, Usys = 7/10 = 0.7.

Абсолютная погрешность этого результата по сравнению с аналитическим методом равна

= | Usys - Vsys | = 0.7- 0.7472 = 0.0472. (7)

Относительная погрешность

= ( / Vsys ) 100% = 0.0472/0.7472 = 6.3%. (8)

В соответствии с заданием, увеличим число испытаний вдвое. Для этого достаточно модифицировать данные в Excel – таблице, снова подсчитать число значений bsys = 0 и, сложив с прежним, получим (показан фрагмент таблицы)

N- = 3+2, N+ = 20 – 5 = 15, Usys = 15/20 = 0.75.

Абсолютная погрешность этого результата по сравнению с аналитическим методом равна

= | Usys - Vsys | = 0.75 - 0.7472 = 0.0028.

Относительная погрешность

= (/ Vsys ) 100% = 0.0028/0.7472 = 0.4%.

Дополнительные замечания о методе Монте-Карло

1. Известно, что точность оценки искомых характеристик тем выше, чем больше число испытаний. Для того чтобы выбрать величину N для конкретных испытаний, задаются вероятностью (доверительной) получения правильного решения, обычно принимаемого равной 0.997, что соответствует диапазону ± 3σ для нормального распределения, где σ = √D - с.к.о. исследуемой случайной величины. Тогда необходимое число испытаний определится из формулы

δ' =

(9)

где δ' – заданная погрешность определения искомой величины.

Для получения более точного результата число испытаний согласно (9), должно быть равно

N = (0.675· σ / δ' )2

Допустим, мы хотим иметь погрешность на уровне 0.001 (0.1%), т.е. быть уверенными что при решении данной задачи методом статистического моделирования значение Usys будет находится в диапазоне

0.7472 .( 1 ± 0.001) = [0.7464, 0.7479].

Исходя из правила «три сигма», зададим величину σ как крайний возможный случай:

σ = ( 1- Vsys ) / 3 = (1-0.7472)/3 = 0.084.

Тогда требуемое число испытаний будет равно

N = (0.675·0.084/0.001) = 3215.

2. В приведенных выше расчетах принята упрощенная модель статистических испытаний с использованием расчетных вероятностей безотказной работы подстанций, а не отдельных элементов системы, с целью сокращения размерности задачи. Не учитывались также вероятности одновременного отказа нескольких элементов, что необходимо для получения правдоподобных результатов.

3. Датчик случайных чисел с равномерным распределением используется при отсутствии каких-либо сведений о фактическом законе распределения. Достоинство равномерного распределения – простота применения, так как нет необходимости в определении его параметров. Но оценки, полученные в численных экспериментах, оказываются «пессимистическими», если реальный закон существенно отличается от равномерного. Кроме того, датчики случайных чисел с равномерным распределением плохо «работают» при очень малых или очень больших значениях вероятности. Поэтому при выборе модели статистических испытаний большое внимание уделяется обоснованию использования того или иного закона распределения.

Таблица 1

Анализ надежности методом Монте-Карло

Блок

ВБР

V

b

Блок

ВБР

V

b

А

0,898

0,144601

1

А

0,898

0,722673

1

Б

0,898

0,338975

1

Б

0,898

0,580761

1

В

0,8

0,285878

1

В

0,8

0,862889

0

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

1

SYS=(А+Б)*В

0

А

0,898

0,284892

1

А

0,898

0,531509

1

Б

0,898

0,133744

1

Б

0,898

0,157723

1

В

0,8

0,710715

1

В

0,8

0,206039

1

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

1

SYS=(А+Б)*В

1

А

0,898

0,621382

1

А

0,898

0,344317

1

Б

0,898

0,803256

1

Б

0,898

0,752622

1

В

0,8

0,99176

0

В

0,8

0,714726

1

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

0

SYS=(А+Б)*В

1

А

0,898

0,189668

1

А

0,898

0,043997

1

Б

0,898

0,943037

1

Б

0,898

0,305982

1

В

0,8

0,774708

1

В

0,8

0,26292

1

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

1

SYS=(А+Б)*В

1

А

0,898

0,647489

1

А

0,898

0,523631

1

Б

0,898

0,196592

1

Б

0,898

0,788625

1

В

0,8

0,937071

0

В

0,8

0,295981

1

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

0

SYS=(А+Б)*В

1

Фрагменты модифицированной таблицы:

А

0,898

0,126677

1

А

0,898

0,906062

0

Б

0,898

0,305332

1

Б

0,898

0,644128

1

В

0,8

0,878459

0

В

0,8

0,196328

1

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

0

SYS=(А+Б)*В

1

А

0,898

0,308921

1

А

0,898

0,804801

1

Б

0,898

0,823393

1

Б

0,898

0,967697

0

В

0,8

0,749413

1

В

0,8

0,964051

0

(А+Б)

ИСТИНА

1

(А+Б)

ИСТИНА

1

SYS=(А+Б)*В

1

SYS=(А+Б)*В

0


Заключение

В курсовой работе был произведён расчёт показателей надежности простейшей системы электроснабжения двумя вероятностными методами: аналитическим и методом статистических испытаний. Абсолютная погрешность результата, полученного методом Монте-Карло по сравнению с аналитическим методом равна 0.0028. Относительная погрешность составила 0.4%. Также была проведена оценка количества испытаний.


Литература

1. Надежность и диагностика систем электроснабжения железных дорог: учебник для ВУЗов жд транспорта / А.В. Ефимов, А.Г. Галкин.- М: УМК МПС России, 2000. - 512с.

2. Китушин В.Г. Надежность энергетических систем: учебное пособие для электроэнергетических специальностей вузов.- М.: Высшая школа, 1984. – 256с.

3. Ковалев Г.Ф. Надежность и диагностика технических систем: задание на контрольную работу №2 с методическими указаниями для студентов IV курса специальности «Электроснабжение железнодорожного транспорта». – Иркутск: ИРИИТ, СЭИ СО РАН, 2000. -15с.

4. Дубицкий М.А. Надежность систем энергоснабжения: методическая разработка с заданием на контрольную работу. – Иркутск: ИрИИТ, ИПИ, СЭИ СО РАН, 1990. -34с.

5. Пышкин А.А. Надежность систем электроснабжения электрических железных дорог. – Екатеринбург: УЭМИИТ, 1993. - 120 с.

6. Шаманов В.И. Надежность систем железнодорожной автоматики и телемеханики: учебное пособие. Иркутск: ИрИИТ, 1999. 223с.

7. Гук Ю.Б. Анализ надежности электроэнергетических установок. - Л.: Энергоатомиздат, Ленинградское отд., 1988. – 224с.

8. Маквардт Г.Г. Применение теории вероятностей и вычислительной техники в системе энергоснабжения.- М.: Транспорт, 1972. - 224с.

9. Надежность систем энергетики. Терминология: сборник рекомендуемых терминов. - М.: Наука, 1964. -Вып. 95. – 44с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно