это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение
Высшего профессионального образования
«Волгоградский государственный технический университет»
Камышинский технологический институт (филиал)
Волгоградского государственного технического университета
Кафедра «Высшей математики»
Типовой расчет
Часть II
по дисциплине: «Экономико-математические методы»
на тему: «Решение задачи линейного программирования
симплексным методом»
Выполнила:
студентка гр. КБА-081(вво)
Титова Мария Дмитриевна
Проверила:
Старший преподаватель каф. ВМ
Мягкова Светлана Васильевна
Камышин - 2009 г.
Для изготовления двух видов продукции P1 и P2 используют три вида сырья S1, S2, S3. На изготовление единицы продукции P1 используют сырье S1 = 4ед., S2 = 5ед., S3 = 4ед. На изготовление единицы продукции P2 используют сырье S1 = 3ед., S2 = 4ед., S3 = 3ед. Запасы сырья S1 составляют не более чем 320 ед., S2 не более чем 318 ед., S3 не более чем 415 ед. Прибыль от единицы продукции P1 составляет 4 рубля, от P2 составляет 5 рублей.
Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Решение:
Таблица данных:
| Вид сырья | Запас сырья, ед. | Количество единиц продукции | |
| P1 | P2 | ||
| S1 | 320 | 4 | 3 |
| S2 | 318 | 5 | 4 |
| S3 | 415 | 4 | 3 |
| Прибыль от единицы продукции, руб. | 4 | 5 | |
Пусть х1 - количество единиц продукции P1, а х2 - количество единиц продукции P2, тогда целевая функция: maxZ=4х1+5х2
Ограничения:
4х1 + 3х2 ≤ 320;
5х1 + 4х2 ≤ 318;
4х1 + 3х2 ≤ 415;
х1, х2 ≥ 0.
Приведем систему ограничений к каноническому виду:
4х1 + 3х2 + х3 = 320;
5х1 + 4х2 + х4 = 318;
4х1 + 3х2 + х5 = 415;
хj ≥ 0 (j = 1,…,5)
Тогда целевая функция: maxZ=4х1+5х2+0х3+0х4+0х5
Составим симплексную таблицу:
| № | БП | СБ | В | х1 | х2 | х3 | х4 | х5 | Θ | min Θ |
| 4 | 5 | 0 | 0 | 0 | ||||||
| 0 | х3 | 0 | 320 | 4 | 3 | 1 | 0 | 0 | 320/3 | |
| х4 | 0 | 318 | 5 | 4 | 0 | 1 | 0 | 318/4 | 318/4▲ | |
| х5 | 0 | 415 | 4 | 3 | 0 | 0 | 1 | 415/3 | ||
| Zj-cj | 0 | -4 | -5▲ | 0 | 0 | 0 | ||||
Δ0 = 320Ч0 + 318Ч0 + 415Ч0 = 0; Δ1 = 4Ч0 + 5Ч0 + 4Ч0 - 4 = -4;
Δ2 = 3Ч0 + 4Ч0 + 3Ч0 - 5 = -5; Δ3 = Δ4 = Δ5 = 0.
Начальный опорный план Х = {0; 0; 320; 318; 415} не оптимальный.
Так как │-5│>│-4│, то второй столбец - разрешающий. Минимальное симплексное отношение min Θ = 318/4, значит вторая строка разрешающая и а22 = 4 - разрешающий элемент.
1-ая итерация: переменная х2 записывается в столбец базисных переменных вместо х4. Элементы 2-ой строки делятся на а22 = 4, а второй столбец заполняется нулями, все другие элементы пересчитываются по правилу прямоугольника.
| № | БП | СБ | В | х1 | х2 | х3 | х4 | х5 |
| 4 | 5 | 0 | 0 | 0 | ||||
| 1 | х3 | 326/4 | 1/4 | 0 | 1 | -3/4 | 0 | |
| х2 | 318/4 | 5/4 | 1 | 0 | 1/4 | 0 | ||
| х5 | 706/4 | 1/4 | 0 | 0 | -3/4 | 1 | ||
| Zj-cj | 1590/4 | 9/4 | 0 | 0 | 5/4 | 0 | ||
После заполнения таблицы видим, что все Δj ≥ 0, поэтому опорный план Х* = {0; 318/4} = {0; 79,5} является оптимальным, а максимальное значение целевой функции равно maxZ= 4Ч0 + 5Ч79,5 = 397,5
Из симплексной таблицы maxZ = 1590/4 = 397,5, значит решение верное.
Ответ: maxZ = 1590/4 = 397,5, при х1 = 0; х2 = 318/4 = 79,5
Вывод: Таким образом, чтобы получить максимальную прибыль, в размере 397,5 рублей, необходимо запланировать производство 79,5 единиц продукции P2, а производство продукции P1 экономически не целесообразно.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнение 6 работ в программе Statistica
Контрольная, Программные статистические комплексы
Срок сдачи к 20 февр.
Написать на 15 стр анализ организации процесса бюджетирования и разработку предложений по оптимизации структуры и формирования бюджетов ооо «стройкомплекс»
Контрольная, Финансовое планирование и бюджетирование в деятельности предприятий
Срок сдачи к 22 янв.
Контрольная под дисциплине Механика жидкости и газа
Контрольная, Механика жидкости и газа
Срок сдачи к 20 янв.
Социальное и общечеловеческое в конфликте поколений в романе И. С
Курсовая, Литература
Срок сдачи к 23 янв.
Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"
Контрольная, Теплотехника и хладотехника
Срок сдачи к 19 янв.
Дипломная работа по теме "разработка программы лояльности и клиентоориентированности для повышения продаж гостиничного продукта на примере гостиницы doubletree moscow arbat"
Диплом, Гостиничное дело
Срок сдачи к 17 апр.
Лабораторная работа № 1.1 Модуль: Основы логического мышления
Решение задач, Введение в специальность, логика
Срок сдачи к 15 янв.
сделать лабораторные работы
Лабораторная, Цифровая культура в профессиональной деятельности, культурология
Срок сдачи к 25 янв.
Заполните форму и узнайте цену на индивидуальную работу!