Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Статистические распределения и их основные характеристики

Тип Реферат
Предмет Математика
Просмотров
1420
Размер файла
98 б
Поделиться

Ознакомительный фрагмент работы:

Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристики

План

1. Вариация признаков в совокупности и значение её изучения

2. Основные характеристики и графическое изображение вариационного ряда

3. Показатели центра распределения

4. Показатели колеблемости признака

1. Вариация признаков в совокупности и значение её изучения

Составной частью сводной обработки данных статистического наблюдения является построение рядов распределения. Цель его - выявление основных свойств и закономерностей стат. совокупности.

Различают два типа рядов распределения:

атрибутивный;

вариационный.

Ряды распределения, построенные по качественным признакам, называют атрибутивными. (Например, распределение население по полу, характеру труда, национальности и т.д.)

Ряды распределения, построенные по количественному признаку называются вариационными. Числовые значения признака - вариантами.

Например, себестоимость 1 кВт/ч электроэнергии по различным тепловым станциям:

Станции12345
с/с 1кВт/ч руб0,580,660,590,67

0,66

Здесь представлены четыре варианты признака в пределах от 0,58 до 0,67 руб. Колебания себестоимости 1 кВт/ч электроэнергии на различных ТЭЦ обусловлены различными факторами, часто действующими в противоположных направлениях (например, снижение уд. расхода топлива ведёт к снижению себестоимости 1 кВт/ч, а повышение цен на топливо - к увеличению себестоимости). В результате совместного действия многих факторов складывается величина собственности 1 кВт/ч на отдельных ТЭЦ.

Изучение характера и степени вариации признаков и отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Данные о стоимости 1 кВт. ч электроэнергии по 5 ТЭЦ образуют так называемый первичный ряд. При наличии достаточно большого количества вариантов значений признака первичный ряд становится труднообозримым и непосредственное рассмотрение его не дает представления о распределении единиц по величине признака в совокупности. Первым шагом в упорядочении первичного ряда является его ранжирование, т.е. расположение всех вариантов ряда в возрастающем (или убывающем) порядке x1£x2£…£xi£…£ xn.

В нашем примере ранжированный ряд имеет вид:

13254
0,580,590,660,660,67

Рассматривая первичный ряд можно видеть, что варианты признака у отдельных единиц совокупности повторяются.

Число повторений отдельных вариантов называют частотой (обозначим ƒ)

Сумма частот, равная объему изучаемой совокупности - n.

По характеру вариации различают дискретные и непрерывные признаки.

Дискретные признаки отличаются друг от друга на некоторую конечную величину, т.е. даны в виде конкретных чисел. (Например, число детей в семье).

Непрерывные признаки могут отличаться друг от друга на сколь угодно малую величину и в определенных границах принимать любые значения. Например, зарплата рабочих, % выполнения.

Способы построения вариационного ряда для этих видов признаков различны. Для построения дискретного ряда с небольшим числом вариантов достаточно перечислить все встречающиеся варианты значений признака (xi), а затем подсчитать частоту повторений каждого варианта ƒi. (Например, распределение студентов по успеваемости и т.п.)

Ряд распределения принято оформлять в виде таблицы, например, распределение рабочих участка по квалификации.

Таблица 1.

Тарифный разряд рабочего (xi) Число рабочих, имеющих этот разряд (ƒi)

Частости

(vi)

Накопление частоты (Si)
1234
210,051
350,256
480,4014
540, 2018
620,1020
Итого201,00

Таким образом, ряд первичных данных, характеризующих квалификацию двадцати рабочих, заменен коротким рядом, состоящим из 5 групп. Вместо абсолютного числа рабочих, имеющих определенный разряд, можно установить долю рабочих этого разряда.

Частоты, представленные в относительном выражении, называют частостями (выражаются в долях единиц или %, обозначаются vi).

В случаях, когда число вариантов дискретного признака велика, а также при анализе вариации непрерывного признака строятся интервальные ряды распределения.

Интервал указывает пределы значений варьирующего признака и обозначаются нижней и верхней границами интервала. Такие распределения наиболее распространены в практике статистической работы.

При построении интервальных рядов необходимо прежде всего установить число групп (интервалов). Для этого нужно определить величину интервала (h). Для построения вариационного ряда с равными интервалами следует:

определить размах вариации (R) - разность между максимальным и минимальным значением признака:

R = xmax- xmin;

Размах вариации делится на число групп k, т.е. . Число групп приблизительно определяется по формуле Стерджесса

k» 1+3,322 lgn,

где n- число изучаемых единиц совокупности. Это выражение, почти всегда дробное число, округляем до целого.

Величина интервала должна определяться в соответствии с точностью данных наблюдения: если исходные данные представлены целыми числами, то и величина интервала округляется до ближайшего целого числа.

Далее можно определить границы всех интервалов ряда распределения. Нижнюю границу I-го интервала можно принять равной минимальному значению признака.

При построении интервальных рядов для непрерывных признаков имеет место совпадение верхних границ предшествующих интервалов и нижних границ следующих за ними интервалом. В какой интервал относить единицы совокупности.

Рассмотрим пример построения ряда распределения по данным о среднегодовой стоимости основных фондов 20 предприятий главка одного министерства (млн. рублей): 3,7; 4,3; 6,7; 5,6; 5,1; 8,1; 4,6; 5,7; 6,4; 5,9; 5,2; 6,2; 6,3; 7,2; 7,9; 5,8; 4,9; 7,6; 7,0; 6,9.

Определяем количество групп вариационного ряда:

k» 1+3,322 lg20 = 1+3,322*1,301»5,32=5 (групп).

Величина интервала млн. руб.

В результате группировки получим ряд распределения предприятий по среднегодовой стоимости основных фондов.

Таблица 2.

Среднегодовая стоимость ОФ, млн. руб. Число предприятийНакопление частоты
3,7 - 4,6 2 2
4,6 + 5,546
5,5 + 6,4612
6,4 + 7,3517
7,3 + 8,2320

Значения признака у отдельных единиц совпала с границами интервала (3,7; 4,6 и 6,4). Так как xmin= 3,7 и совпадает с нижней границей I‑го интервала и включается в этот интервал, то и другие значения следует включать в интервал, нижняя граница которого совпадает с указанным значением (4,6 - включается во II‑й интервал, а 6,4 - в IV-ый).

Если приведенный вариационный ряд с неравными интервалами, то для правильного представления о характере распределения необходимо рассчитать абсолютную и относительную плотности распределения.

Абсолютная плотность:

;

Относительная плотность:

Эти показатели необходимы для преобразования интервалов изменения оценки данных, собранных по различным совокупностям и по разному обработанных.

Например, по двум предприятиям известно распределение рабочих по проценту выполнения норм выработки.

Таблица 3.

Завод 1Завод 2
Группы рабочих

Кол-во рабочих,

% к итогу

Группы рабочих

Кол-во рабочих,

% к итогу

До 902До 1008
90-1003100-12040
100-11050120-15020
110-12030150-18015
120-1408180 и выше17
140-1505
150-1602
ИТОГО100100

Воспользуемся укрупнением интервалов для перегруппировки данных.

Таблица 4.

Группы рабочих по проценту выполнения норм выработкиКоличество рабочих,% к итогу
Завод 1Завод 2
До 10058
100-1208040
120-1501320
150 и выше 232
ИТОГО100100

Можно воспользоваться и другой группировкой по проценту выполнения норм выработки, например, выделить такие интервалы:

Группы рабочих12345
% выполнение нормы выработкиДо 100100-110110-120120-140140-160

Для такой группировки возникает необходимость расширения ряда распределения рабочих Завода 2.

Если известна относительная плотность распределения, то частости соответствующего интервала можно определить: произведение плотности на величину интервала.

vi=m0i´h.

По данным таблицы 3 определяем плотности распределения группы рабочих по проценту выполнение норм выработки для интервалов:

ІІ - го: 100-120 m02=2,0 (40/20)

ІІІ - го: 120-150 m03=2/3 (20/30)

IV- го: 150-180 m04=1/2 (15/30)

Тогда количество рабочих (% к итогу) Завода 2, выполняющих норму на 140‑160% определяются так:

2/3´10+1/2´10=12.

Результаты перегруппировки представлены в таблице 5.

Таблица 5.

Группы рабочих по проценту выполнения норм выработкиКоличество рабочих,% к итогу
Завод 1Завод 2
До 10058
100-1105020
110-1203020
120-140813
140-160712
160 и выше-27
ИТОГО100100

2. Основные характеристики и графическое изображение вариационного ряда

Для целей анализа и сравнительной характеристики различных рядов распределения применяются обобщающие показатели вариационного ряда. Систему показателей рассмотрим на примере.

Допустим, что по 5 производственным участкам известны данные о распределении 100 рабочих по квалификации (табл.6).

Таблица 6.

Разряд рабочихЧисло рабочих участка
IIIIIIIVV
220-1015
3602020910
4206040806
5-2020915
6--10110
Итого100100100100100

Распределения рабочих І-го и ІІ-го участков, имеют одинаковый размах вариации и характер распределения частично отличаются: величиной варьирующего признака, т.е. центром группирования.

Среднее квадратическое отклонение показывает также как расположена основная масса единиц совокупности относительно средней арифметической. В соответствии с теоремой Чебышева можно утверждать, что независимо от формы распределения 75% значений признака попадают в интервал ; а по крайней мере 89% всех значений попадают в интервал

Необходимо отметить, что если при расчете арифметической для достаточно симметричного ряда распределения м/д не оказывают существенного влияния на ее отклонение от средней арифметической, рассчитанной по первичным данным, то при расчете дисперсии этот факт приводит к появлению систематической ошибки.

В.Ф. Шеппард установил, что ошибка в дисперсии, вызванная применением сгруппированных данных при расчете составляет 1/12 квадрата величины интервала, т.е. скорректированная дисперсия равна

І группа обобщающих показателей - характеристика центра группирования в качестве которых используют: среднюю арифметическую,

моду;

медиану.

Распределение рабочих ІІ-го и ІІІ-го участков имеют один и тот же центр группирования и симметричное расположение частот вокруг него, но отличаются пределами вариации.

ІІ группа- показатели степени вариации - т.е. характеристика колеблемости признака.

Распределение рабочих ІІІ-го и IV-го участков имеют и тот же центр группирования, пределы варьирования признака, симметричный характер ƒ расположения частот, но имеют разную степень вытянутости вдоль оси ординат, которая характеризуется показателями эксцесса.

Распределение рабочих IV-го и V-го участков показывает, что они отличаются характером распределения частот относительно центра. Для IV-го участка оно симметрично, для V-го участка оно не симметрично.

Степень отклонения от симметричной формы характеризуется показателями асимметрии.

ІІІ группа показателей - показатели формы распределения.

Графическое изображение рядов расширения облегчает их анализ и позволяет судить о форме распределения. Для графического изображения дискретного ряда применяют полигон распределения. На оси абсцисс отмечают точки, соответствующие величине варианты признака. Из них восстанавливаются перпендикуляры, высота которых - частости этих вариантов. Вершины перпендикуляров соединяются отрезками прямых. Крайние вершины соединяются с точками на оси абсцисс, отстоящими на одно деление от xmax и xmin.

Для графического изображения интервальных вариационных рядов применяется гистограмма.

Она строится так, что на оси абсцисс откладываются равные отрезки, которые соответствуют величине интервалов вариационного ряда. На отрезках строят прямоугольники, площади которых пропорциональны частотам (частостям) интервала.


По данным табл.1 построим полигон распределения.


f

8
7

Распределение рабочих участка по квалификации:

X – тарифный разряд

f – число рабочих

6
5
4
3
2
1
1234567x

По данным табл.2 построим гистограмму ряда распределения предприятий по стоимости основных фондов.

f
6

Распределение по размеру прибыли:

- средняя годовая стоимость ОФ

f – число предприятий

5
4
3
2
1
3,74,65,56,47,38,2

Гистограмма может быть преобразована в полигон распределения, для чего середины верхних сторон прямоугольников соединяют отрезками прямых. Две крайние точки прямоугольников замыкаются по оси абсцисс на середины интервалов, в которых частоты равны 0.

При увеличении числа наблюдений совокупности увеличивается число групп интервального ряда, что соответственно приводит к уменьшению величины интервала. При этом ломанная линия будет иметь тенденцию превращения в плавную кривую, которую называют кривой распределения. Она характеризует в обобщенном виде вариацию признака и распределение частот внутри однокачественной совокупности.

В ряде случаев для изображения вариационных рядов используется кумулятивная кривая (кумулянта). Построим кумулятивную кривую по данным табл.2 о распределении банков по размеру прибыли. Накопленные частоты рассчитаны в графе 3 табл.2.

При построении кумулянты интервального ряда распределения нижней границе первого интервала соответствует частота, равная 0, а верхней границе - вся частота данного интервала. Верхней границе второго интервала соответствует накопленная частота, равная сумме частот первых двух интервалов и т.д.

S
20
16
12
8
4
3,74,65,56,47,38,2

Изображение вариационного ряда в виде кумулянты особенно удобно при сравнении вариационных рядов, а так же в экономических исследованиях, в частности для анализа концентрации производства

3. Показатели центра распределения

Для характеристики среднего значения признака в вариационном ряду используются средняя арифметическая, мода и медиана.

Общие понятия о средних величинах и их свойствах рассматривались в предыдущей лекции. Здесь же мы рассмотрим расчет показателей центра распределения для вариационных рядов.

Напоминаю, что средняя арифметическая рассчитывается по формуле:

В интервальном ряду средняя арифметическая определяется по формуле:

,

где x’ - средина соответствующего интервала;

f- частота повторений варианты признака.

В отличие от алгебраических средних, которые в значительной мере являются абстрактной характеристикой статистического ряда, мода и медиана выступают как конкретные величины, совпадающие с вполне определенными вариантами этого ряда.

Мода - это наиболее часто встречающаяся величина признака в данной совокупности.

В вариационном ряду моду будет представлять варианта, которая обладает наибольшей частотой.

В дискретном ряду распределения мода определяется просто.

Пример 1. Распределение семей по числу совместно проживающих членов семьи.


Таблица.

Число членов семьиЧисло семей,% к итогуНакопленные частоты, S
21010
33747
42875
51590
6999
71100
ИТОГО100-

Модой в данном примере являются 3 члена семьи, т.к этой величине соответствует наибольшая частность (37).

Мода интервального вариационного ряда определяется по формуле:

;

где x0 - начало модального интервала,

h- величина интервала (модального),

f0 - частота модального интервала,

f-1 - частота предмодальная,

f+1 - послемодальная частота.

Используя данные табл.2 определим моду:

При неравных интервалах для расчета моды применяется эта же формула, но вместо частот в ней следует использовать плотность распределения.

Медианойв статистике называется численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда.

Порядковый номер медианы определяется следующим образом: численность (дискретного) ряда увеличивается на единицу и делится пополам, т.е. (n+1) /2.

Если вариантов - четное число, то медиана определяется как среднее из двух центральных вариантов, порядковые номера которых n/2 и (n/2) +1. Так, если в ряду распределения 100 единиц, то в центре стоят единицы с порядковыми номерами 100: 2=5 и 100: 2+1=51 и медиана должна быть получена как средняя из величин этих вариантов. Однако, если единиц в совокупности достаточно много и различия между величинами рядом стоящи вариантов небольшие, то можно считать медианой один из центральных вариантов с порядковым номером n/2. Так обычно делают, определяя медиану при четном числе членов ряда.

При определении медианы для интервальных рядов, вначале определяется медианный интервал, т.е. интервал, в котором лежит медиана. Он определяется также как и при определении медианы дискретного ряда, т.е. подсчитывают суммы накопленных частот.

,

Где x0 - нижняя граница медианного интервала,

h- величина интервала,

S-1 - накопленная частота интервала, предшествующего медианному,

fме - частота медианного интервала.

Моду и медиану можно определить графически. Медиана определяется по кумулянте. Моду - по гистограмме распределения.

4. Показатели колеблемости признака

В ходе анализа средних величин возникает вопрос степени колеблемости, степени вариации, скрывающейся за средней величиной. Для характеристики колеблемости варьирующего признака в изучаемой совокупности явлений применяются следующие показатели:

Размах вариации;

Среднее линейное отклонение;

Дисперсия;

Среднее квадратическое отклонение;

Коэффициент.

Размах вариации или размах колеблемости является наиболее простым измерителем вариации признака. Он равен разности между наибольшим (максимальным) и наименьшим (минимальным) значением варьирующего признака в данном ряду.

R = xmax- xmin.

При определении величины размаха вариации учитываются только два крайних значения признака, колеблемость же и распространенность (частота) его в этом показателе не находят отражения.

Среднее линейное отклонение является несколько более совершенной мерой вариации и характеризует колеблемость значений признака по всей совокупности явлений.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных отклонений варьирующего признака от его среднего значения. Так как алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической всегда равна 0, то для расчета среднего линейного отклонения используется арифметическая сумма отклонений, т.е. суммируются абсолютные значения индивидуальных отклонений независимо от знака.

Среднее линейное отклонение вычисляется по следующим формулам:

Для первичного ряда:

Для вариационного ряда:

Дисперсия s2 - средняя из квадратов отклонений вариантов значений признака от их средней величины. Дисперсия рассчитывается по следующим формулам:

Для первичного ряда:

для вариационного ряда:

Формулу для расчета дисперсии можно преобразовать:

,

т.е. дисперсия равна разности средней из квадратов и квадрата средней. Этой формулой пользуются машинной обработке исходных данных.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить ее вычисления:

дисперсия постоянной величины равна 0;

если все варианты значений признака уменьшить на одно и то же число, то дисперсия не уменьшится;

если все варианты значений признака уменьшить в одно и то же число раз (kраз), то дисперсия уменьшится в k2 раз.

Среднее квадратическое отклонение представляет собой среднюю, исчисленную на основе квадратов отклонений отдельных значений варьирующего признака от их среднего значения.

Среднее квадратическое отклонение s представляет собой корень квадратный из дисперсии:

Для первичного ряда:

Для вариационного ряда:

Размах вариации, среднее линейное и среднее квадратическое отклонение являются величинами именованными. Они имеют те же единицы измерения, что и индивидуальные значения признака.

Дисперсия и среднее квадратическое отклонение - наиболее широко применяемые показатели вариации. Объясняется это тем, что они входят в большинство теорем теории вероятности, служащих фундаментом математической статистики.

Расчет показателей вариации для предприятий, сгруппированных по среднегодовой стоимости основных фондов, показан в таблице.

Средняя годовая стоимость ОФ, млн. руб.

Число предприятий

f

Средина интервала

X’

3,7-4,624,158,30-1,9353,8707,489
4,6-5,545,0520, 20-1,0354,1404,285
5,5-6,465,9535,70-0,1350,8100,109
6,4-7,356,8534,25+0,7653,8252,926
7,3-8,237,7523,35+1,6654,9958,317
ИТОГО20121,7017,64023,126

Среднее линейное отклонение:

Среднее квадратическое отклонение:

Дисперсия:

Так как средняя величина колеблемости средней годовой стоимости основных фондов составляет:

По среднему линейному отклонению - 0,822 млн. руб.

По среднему квадратическому - 1,075 млн. руб.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.

При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической пользуются относительными показателями вариации. Эти показатели вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах, среднее линейное отклонение, среднее квадратическое отклонение, относительные показатели колеблемости:

Коэффициент осцилляции -

отражает относительную колеблемость значений признака вокруг средней, крайних.

Относительное линейное отклонение

- характеризует долю усредненного значения абсолютных отклонений от средней величины.

Коэффициент вариации

Наиболее часто применяется показатель колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

Для рассмотренного примера:

Оставалась на коэффициенте вариации, можно сделать вывод, что по размеру прибыли совокупность является однородной.

Если статистическая совокупность разбита на группы по какому-либо признаку, то для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, можно воспользоваться разложением дисперсии на составляющие: на межгрупповую и внутригрупповую дисперсии.

Общая дисперсия характеризует вариацию признака, которая зависит от всех условий в данной совокупности и вычисляется:


где - общая средняя для всей изучаемой совокупности.

Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием признака фактора, положенного в основу группировки. Она характеризует колеблемость групповых (частных) средних около общей средней.

Межгрупповая дисперсия вычисляется по формуле:

,


где - средняя по отдельным группам,

- частота отдельных групп.

Средняя из внутригрупповых дисперсий характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других, не учитываемых факторов и не зависит от условия, положенного в основу группировки.

Она определяется по формуле:

Между общей дисперсией, средней из внутригрупповых дисперсий и межгрупповой d2 дисперсиями существует соотношение, определяемое правилом сложения дисперсий:

.

Рассмотрим правило сложение дисперсий на следующем примере.

По результатам маркетингового обследования туристических фирм, организующих недельные туры в Испанию в различные курортные города, получены следующие данные о вариации стоимости туров в сентябре 1997 г.

Месторасположение курортаЧисло турист. фирм, fiСредняя цена недельного тура, дол. Дисперсия цен тура в группе
Коста - Брава7528,572728,04
Коста-дель-Соль6588,338851,14
ИТОГО: 13556,165554,08

Вариация цен в обследованной группе туристических фирм, обусловленная различием в месторасположении курорта будет характеризоваться величиной межгрупповой дисперсии.

Средняя цена тура по всем фирмам составила:

$

Тогда межгрупповая будет равна:

Вариация цен под влиянием всех прочих факторов, кроме месторасположения курорта, будет характеризоваться величиной средней из внутригрупповых дисперсий:

Вариация цен на недельные туры в Испанию, обусловленная влиянием всех факторов, формирующих уровень цен в заданной группе:

Правило сложения дисперсий имеет большую практическую значимость, т.к. позволяет выявить зависимость результатов от определяющих факторов соотношением межгрупповой и общей дисперсии - коэффициент детерминации.

Отсюда можно сделать вывод, что на 13,78% дисперсия цен на недельные туры объясняется различиями в месторасположении курорта, а на 86,22% - влиянием прочих факторов.

Таким образом, преобладающее влияние на вариацию цен недельных туров в Испанию оказывают прочие факторы.

В статистике наряду с показателем вариации количественного признака определяются показатели вариации альтернативного признака. Альтернативными являются признаками, которыми обладают одни единицы изучаемой совокупности и не обладают другие. Например: при, изучении качества изготовленной продукции можно разделить её на две группы годную и бракованную, т.е. в данном случае это два взаимно исключающих вариантов.

При статистическом выражении колеблемости альтернативных признаков наличие изучаемого признака обозначается 1, а его отсутствие - 0. Доля вариантов, обладающих изучаемым признаком обозначается р, а доля вариантов, не обладающих - q, следует

p + q = 1

Допустим, общее число единиц совокупности равно n. Число единиц обладающих признаком - f, тогда число единиц не обладающих дополнительными признаком будет равно n- f.

Учитывая изложенное

Значение переменнойЧастота повтора

f

n- f

Отсюда

Дисперсия

Средняя квадратичная равна

.

Например в результате контроля из 1000 готовых изделий 20 - бракованных.

Отсюда

1 - соответствует бракованным изделиям

0 - годной продукции

Процент барка равен .

Тогда величина дисперсии

Если признак принимает больше двух значений, то оценка вариации равна

,

где W- доля каждого признака.

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму). Число наблюдений, по которому строится эмпирическое распределение, обычно невелико. С увеличением числа наблюдений и одновременным уменьшением величины интервала зигзаги полигона начинают сглаживаться и в результате чего получается плавная кривая, которая называется кривой распределения.

Если кривая построена по данным наблюдения, то она называется эмпирической кривой, а если она отражает закономерность соотношения вариант и частот, то она называется теоретической кривой. Исследование закономерности (формы) распределения включает решение трёх последовательных задач:

выяснение общего характера распределения

выравнивание эмпирического распределения, которое состоит в том, что на основании эмпирического распределения строится кривая y=f (x)

проверка соответствия найденного теоретического распределения эмпирическому.

В практике статистического исследования встречаются различные распределения.

Однородные совокупности характеризуются, как правило, одновершинными распределениями. Многовершинность свидетельствует о неоднородности. Появление двух вершинной или асимметричной кривой означает, нарушение при изменении условий получения и обработки сведений в этом случае необходима перегруппировка данных.

Выявление общего характера распределения предполагает не только степень его однородности, а также вычисление показателей асимметрии и эксцесса.

Симметричным является распределение в котором частота любых двух вариантов равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричного распределения

.

Поэтому показатель асимметрии, основан на соотношении показателей центра распределения: чем больше разница между средними () тем больше асимметрия ряда.

Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель AS.

ASможет быть положительным и отрицательным.

Положительная величина указывает на наличие правосторонней асимметрии


()

Отрицательный знак свидетельствует о наличии левосторонней асимметрии

()

Другим показателем асимметрии, предложенный шведским математиком Линбергом, рассчитывают по формуле:

AS= П - 50,

где П - процент тех значений признака, которые превосходят по величине среднюю арифметическую.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна 0).

Моментом распределения называется средняя арифметическая тех или иных степеней отношения индивидуальных значений признака от определенной исходной величины.

,

где А - величина, от которой определяется отклонение

a - степень отклонения (порядок момента)

В зависимости от того, что принимают за величину А, различают три вида моментов:

Начальные моменты получают при А=0


Центральные моменты получают при А=

Условные моменты maполучают при А, не равной средней арифметической и отличной от нуля:

В статистической практике пользуются моментами превого, второго, третьего и четвертого порядков.

Моменты распределения порядкаНачальныеЦентральныеУсловные
I
II

Начальные моменты второго, третьего и четвертого порядков так же, как и условные моменты самостоятельного значения не имеют, а используют для упрощенного вычисления центральных моментов.

Например, используя начальные моменты первого и второго порядка можно вычислить дисперсию по формуле:

.

Таким образом, показатель асимметрии может быть вычислен по формуле:

Применение этого показателя дает возможность не только определить степень асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности.

Эта оценка делается при полюции след. показателя (сред. квадр. отклон)

Если отношение

,

а асимметрия несущественна и наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности).

Наиболее точным является показатель оснований на использовании центрального момента четвертого порядка.



На рисунке:

островершинное распределение (величина эксцесса положительная)

плосковершинное (величина эксцесса отрицательная)

кривая нормального распределения.

Эксцесс - выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении:

.

Оценка показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения, которое имеет следующие особенности:

кривая симметрична относительно максимальной ординаты, которая равна x=M0=Mlи величина

кривая приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности. Следовательно, чем больше значения отклоняются от , тем реже они встречаются. Одинаковые по абсолютному значению, но противоположные по знаку, отклонения значений переменной х от - равновероятны.

При =const и при увеличении s кривая становится более пологой. При s=constс изменением кривая не меняет свою форму, а лишь сдвигается вправо или влево по оси абсцисс.


s1<s2<s3

В промежутке находится 68,3% всех значений признака.

В промежутке находится 95,4% всех значений признака.

В промежутке находится 99,7% всех значений признака.



Нормальное распределение возможно в том случае, когда на величину признака влияет большое число случайных причин. Действие этих причин независимо, и ни одна из причин не имеет преобладающего влияния над другим.

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно