Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Основные понятия математического анализа

Тип Реферат
Предмет Математика
Просмотров
427
Размер файла
52 б
Поделиться

Ознакомительный фрагмент работы:

Основные понятия математического анализа

1. Определение неопред. интеграла. Если ф-ия F(x) – первообр для ф-ии f(x) на промежутке [a,b], то мн-о ф-ий F(x)+C, где С =const, назыв неопред интегр от ф-и f(x) на этом промежутке: ∫f(x)dx=F(x)+C При этом ф-я f(x) назыв подынтегр ф-ей, f(x)dx – подынтегр выр-ем, х – переменной интегр-я.

2.Опред-ие первообр от непрерыв ф-ии. Ф-ия F(x) назыв первообр для ф-ии f(x) на промежутке [a,b], если для всех значений х из этого промежутка вып- я F’(x)=f(x). Если ф-ия f(x), хЄ[a,b] – непрерыв, то для нее сущ-ет первообразная (неопред. Интеграл)

4. Выр-ие (∫f(x)dx). Производная неопред интеграла = подынтегр ф-ии. (∫f(x)dx)’=f(x). Док-во: (∫f(x)dx)’= =(F(x)+C)’= F’(x)= f(x)dx

5. Выр. ∫dF(x)Неопред интеграл от дифф-ла некоторой ф-ии = сумме этой ф-ии и произвольной постоянной ∫dF(x)=F(x)+C.Так как ∫dF(x)= F’(x)dx, то ∫F’(x)dx=F(x)+C. Теорема: Если ф-я F(x) является первообр ф-ии f(x) на отрезке [a,b], то мн-во всех первообр ф-ии f(x) задается формулойF(x)+C, С=const.

Док-во: F(x)+C – первообр, тогда (F(x)+C)’= F’(x)+C’= F’(x)=f(x) Ф(х) – -тоже первообразная: Ф’(х)=f(x), xЄ[a,b]. (Ф(х)-F(x))’= Ф’(х)-F’(x)=f(x)- f(x)=0 =>Ф(х)-F(x)=C, С-const. Таким образом Ф(х)=F(x)+С. Ф-ия, производ которой на некотором промежутке Х равна 0, постоянна на этом промежут-ке. φ’(x)=0 => φ(x)=C, для каждого хЄ[a,b], тогда для каждого х1,х2 Є [a,b], х1<х2. По теореме Лангранжа: φ(x2)- φ(x1)=0, φ(x)=С

6. Если k-const, ненулевое число, то ∫kf(x)dx=kf(x)dxk можно вынести из-под знака интеграла. Пусть F(x) – первообр для ф-ии f(x), т.е. F’(x)=f(x), тогда kF(x)-первообр для ф-ии kf(x): (kF(x))’=kF’(x)=kf(x). -k∫f(x)dx=k[C+(x)F]=kF(x)+C1=∫kf(x)dx, где С1=kC 7. Если ∫f(x)dx=F(x)+C, то и ∫f(u)du= F(u)+C, u=φ(x) – произвольная ф-ия, непрерывн, дифферен-я. f(x)-непрерыв. => ∫f(x)dx=F(x)+C, u=φ(x)-непрерыв. дифферен.ф-я. F(u)=F(φ(x)) –согласно инвариантности первого дифф-ла. Инвариантность первого дифф-ла: y=f(x) dy=f’(x)dxy=f(u), u=φ(x)– непрерыв, диф-я dy=f’(x)dudF(u)=F’(u)du= =f(u)du ∫f(u)du=∫d(F(u))=F(u)+C

8. Выражение d(∫f(x)dx)=f(x)dx - Дифференциал от неопред интегр = подынтегр выр-ю. d(∫f(x)dx)=d(F(x)+C) =dF(x)+dC=F’(x)dx+0=f(x)dx

9. Интеграл ∫[f(xg(x)]dx= ∫f(x)dx±∫g(x)dx –неопред интеграл от алгебраической суммы двух ф-ий равен алгебраической суммe интегр от этих

ф-ийвотдельности: Пусть F(x) и G(x) – первообразныедляф-ий f(x) и g(x): ∫[f(x)+g(x)]dx=∫(F’(x)+G’(x))dx=∫(F(x)+G(x))’dx=∫d(F(x)+G(x))= F(x)+G(x)+C= F(x)+G(x)+C1+C2=F(x)+C1+G(x)+C2 =∫f(x)dx+∫g(x)dx.

10. Вывод формулы замены переменного в неопред интегр (подстановка).Пусть ф-я x=φ(t) опред-на и диф-ма на некотором промежутке Т и Х-мн-во значений этой ф-ии, на кот. определена ф-я f(x). Тогда, если на мн-е Х ф-я f(x) имеет первообр, то на мн-ве Т справедлива фор-ла: ∫f(x)dx= ∫f[φ(t)]φ’(t)dt Док:Пусть F(x)-первообр для f(x) на мн-ве Х. Рассмотрим на мн-ве Т сложную ф-ю F[φ(t)]: (F[φ(t)])’= Fx’[φ(t)]φ’(t) =f[φ(t)]φ’(t), т.е. ф-я f[φ(t)]φ’(t) имеет на мн-ве Т первообр F[φ(t)] >∫f[φ(t)]φ’(t)dt=F[φ(t)]+C,Замечая что F[φ(t)]+C=F(x)+C= ∫f(x)dx, =>получаем ∫f(x)dx= ∫f[φ(t)]φ’(t)dt.

Дарбу: Mn=sup (f(x)); mn=inf (f(x)), xÎ(xi-1; xi) Sρ=å Mn∆xi – верхний; Sρ=å mnxi- нижний; СВ-ВА:

1,"верхняя сумма >=нижней; 2, при изменеии разбиения верхняя не увел, нижняя не умень.; 3, измельчение разбиения-добовлене нескольких точек0=<Sρ-I<e -для верх и ниж - Лемма.

11. Вывод формулы интегрир по частям. Пусть ф-ии u(x) и v(x) определены и диф-мы нанекотором пром-ке Х и пусть ф-я u’(x)v(x) имеет первообр на этом пром-ке. Тогда на пром-ке Х ф-я u(x)v’(x) также имеет перво-ю и справедлива формула: ∫u(x)v’(x)dx=u(x)v(x)-∫v(x)u’(x)dx. Док-во: [u(x)v(x)]’= u’(x)v(x)+u(x)v’(x) -u(x)v’(x)=[u(x)v(x)]’-u’(x)v(x)Первообр ф-ии [u(x)v(x)]’ на пром-ке Х является ф-я u(x)v(x). Ф-я u’(x)v(x) имеет первообр на Х по условию теор. -, и ф-я u(x)v’(x) имеет пер-ю на Х.Интегр-уя последнее рав-во получаем: ∫u(x)v’(x)dx=u(x)v(x)-∫v(x)u’(x)dx. Так как v’(x)dx=dv,u’(x)dx=du, то ее можно записать в виде: ∫udv=uv-∫vdu По лекциям: d(uv)=udv+vdu;∫d(uv)= ∫udv+vdu => ∫udv=∫d(uv)-∫vdu=uv-∫vdu Теорема о существовании конечного.

12. Определение дробно рациональной ф-ии. Понятие правильной и неправильной рациональной фун-ии. Простейшие дроби вида 1-4.Фун-ия вида Pn(x)=anxn+ an-1xn-1 +…+ a1x1+a0, n – натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.

Определение: Дробно рацион фун-й (рациональной дробью) назыв фун-ия равная отношению 2-х мн-нов: f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида

1)A/(x-a)

2)A/(x-a)k k>=2 целое

3)(Mx+n)/(x2+px+q) x2+px+q=0, D<0

4) (Mx+n)/(x2+px+q)kk>=2

предела интегральных сумм для непрерывных ф-ий: Пусть сущ f.

13. Если х=а – действит корень кратности k знамен-ля Qn(x) прав-ой рацион дроби, т.е. Qn(x)=(х-а)kÕn-k(x) Тогда дробь будет представляться в виде суммы 2 правильных дробей: Pm(x)/Qn(x)=A/(х-а)k+Rs(x)/(х-а)k-1Õn-k(x) A-некоторая постоянная, s<n-1 Док-во: Pm(x)/Qn(x)=[A Õn-k(x)+ Pm(x)-AQn-k(x)]/[(х-а)kÕn-k(x)]=[ A Õn-k(x)]/ [(х-а)kÕn-k(x)]+[ Pm(x)-AQn-k(x)]/ [(х-а)kÕn-k(x)]=A/(х-а)k+[Pm(x)-AQn-k(x)]/ [(х-а)kÕn-k(x)], для каждого А. х=а – корень ура-я Pm(x)- A Õn-k(x)=0; Pm(а)- A Õn-k(а)=0; Pm(а)≠0 и A Õn-k(а)≠0; A= Pm(а)/A Õn-k(а); Pm(x)- A Õn-k(x)=(x-a) Rs(x); Pm(x)/Qn(x)= A/(х-а)k+[(x-a) Rs(x)]/[(x-a) Õn-k(x)]= A/(х-а)k+ Rs(x)/[(х-а)k-1 Õn-k(x)]; A= Pm(а)/Õn-1(а).

14. Если Qn(x)= (x2+px+q)µ Тn(x), где p2-4q<0, Тn(x) мн-ен не делится на x2+px+q, то правильную рацион дробь Pm(x)/Qn(x) можно представить в виде суммы 2 правильных: Pm(x)/Qn(x) =(Mx+N)/ (x2+px+q)µ +Фs(x)/[ (x2+px+q)µ-1. Тn(x)],µ,N-нек постоянные, s<n-1 Док-во: Pm(x)/Qn(x) =[(Mx+N) Тn(x)+ Pm(x)-(Mx+N) Тn(x)]//(x2+px+q)µ Тn(x)]= (Mx+N)/(x2+px+q)µ+ [Pm(x)-(Mx +N) Тn(x)]/[ (x2+px+q)µ Тn(x)] для люб µ и N. x2+px+q=0, D<0, x12=α±iβ, µ и N: Pm (α+iβ)-[ µ (α+iβ)+N]*Tn(α+iβ)=0. µ (α+iβ)+N=[ Pm (α+iβ)] /[ Tn(α+iβ)]=k+il. Система{ µ α+N =k=> N=k- α(L/b) µb=L=> m=L/bPm(x)/Qn(x)=(Mx+N)/(x2+px+q)µ s(x)/[ (x2+px+q)µ-1Тn(x)]конечному пределу при ранге разбиения - 0.

15. Разложение рацион дроби на простейшие. Если рацион ф-я R(x)/Q(x) имеет степень мн-на в числ-ле < степени мн-на в знамен-ле, а мн-н Q(x) представлен в виде Q(x)= A(x-a)r(x-b)s…(x2+2px+q)t(x2+2ux+v)z…, где a,b,.., p,q,u,v,…-вещественные числа, то эту ф-ю можно единств образом представить в виде:R(x)/Q(x) =A1/(x-a)+A2/(x-a)2+…. An/(x-a)n+…. (M1x+N1) / (x2+2px+q)+ (M2x+N2)/ /(x2+2px+q)2+…+(Mkx+Nk)/(x2+2px+q)k+, где А1,А2,.М1..N1-вещест числа

16. Определение дробно рацион фун-ии. Понятие правильной и неправ-ной рациональной фун-ии. Простейшие дроби вида 1-4.Фун-ия вида Pn(x)=anxn+ an-1xn-1 ++ a1x1+a0, n– натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.

Определение: Дробно рацион фун-uей (рациональной дробью) назыв фун-ия равная отн-ю 2-х мн-нов:f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида

1)A/(x-a) 2)A/(x-a)k k>=2 целое

3)(Mx+n)/(x2+px+q) x2+px+q=0, D<0

4) (Mx+n)/(x2+px+q)k k>=2

17. Вычисление интегралов от тригонометрических ф-ий.

1) ∫R(sinx, cosx)dx Замена перем-ных tg(x/2)=t (универ. тригонометр замена)sinx=2t/(1+t2) cosx=(1-t2)/ /(1+t2)dx=2/(1+t2)dt;∫R(2t/(1+t2), (1-t2)/ /(1+t2)) 2/(1+t2)dt=∫Ř(t)dt

2)∫R(sinx) cosxdx=|sinx=t, cosxdx=dt|=∫R(t)dt

3)∫R sinx(cosx)dx=|cosx=t, -sinxdx=dt|=-∫R(t)dt

4) ∫R(tgx)dx=|t=tgx, x=arctgt, dx=dt/(1+t2)|= ∫R(t)dt/(1+t2)5) R(sinx, cosx)= R(-sinx, -cosx)

∫R(sinx, cosx)dx=|t=tgx, dx = dt/(1+ t2)| =∫Ř(t)dt

6) ∫sin m x cos n xdx

a)m=2k+1 ∫sin 2k x cos n x sinxdx=∫(1-cos 2 x)k cos n x sinxdx=|t=cosx, dt=-sinxdx|=-∫(1-t 2)k t n dt

b)n=2k+1 ∫sin m x cos 2k x cosxdx= ∫sin m x (1-sin 2 x)k dsinx

7) ∫sin 2p x cos 2a xdx sin2x=(1-cos2x)/2

cos2x=(1+cos2x)/2 sinxcosx=(1/2)sin2x

8) m=-µ n=-ν замена t=tgx

1/ sin2x=1+ ctg2x 1/ cos2x=1+tg2x

9) ∫tgmxdx; ∫ctgmxdx, m-целое >0ое tg2x=1/ cos2x-1

сtg2x=1/ sin2x-1

10) ∫sinmxcosnxdx ∫sinmxsinnxdx

∫cosmxcosnxdxsinmxcosnx=(1/2)(sin(m+n)x+sin(m-n)x)

sinmxsinnx=(1/2)(cos(m-n)x-cos(m+n)x)

Теорема о существовании конечного предела интегральных сумм для непрерывных ф-ий

Пусть существует f определенная на замкнутом интервале [a,b] => ее интегр суммы стремяться к конечному пределу при ранге разбиения - 0.

ax2+bx+c=a(x+b/2a)+(4ac-b2)/(4a2) x+b/2a=t; (ax+b)/(cx+d)=tk=>

ax+b= cx tk+ dtk=>x=…; dx=(…)dt

Заменапеременной: ∫f(x)dx=|x=φ(t); t=g(x); dx= φ’(t)dt|=∫f(φ(t)) φ’(t)dt

Поднесение по знак дифф-ла: Если ∫f(x)dx=F(x)+C, то ∫f(n)dx=F(n)+C

интегрир по частям: ∫udv=uv-∫vdu

∫xsinxdx=|u=x; du=dx; dv=sinxdx; v= -cosx|=-xcosx-∫-cosxdx= -xcosx+sinx.

Ф-цию вида R(x,mÖ(ax+b)/(cx+d) –называют дробно линейной ирр-тью. С помощью замены t=mÖ(ax+b)/(cx+d) рационализируем интеграл. tm= (ax+b)/(cx+d); x=(b-dtm)/(ctm-a) –рацион ф-ция от t; dx=(mtm-1(ad-bc)dt)/(ctm-a)²ÞòR(x,mÖ(ax+b)/ (cx+d))dx=òR((b-dtm)/ (ctm-a),t) (mtm-1(ad-bc)dt)/(ctm-a)²= òR1(t)dt. R1(t)-рацион-ая. Вида òR(x,Öax²+bx+c)dx, -квадр-ая ирр-ть где а, b, c=const. Если трёхчлен ax²+bx+c имеет действит корни х1 х2 то ax²+bx+c=a(x-x1)(x-x2) и R(x,Öax²+bx+c)=R(x,(x-x1)Ö(x-x2)a/(x-x1)=R1(x,Ö(x-x2)/(x-x1); пусть ax²+bx+c не имеет действит корней и а>0. Тогда подстановка (Эйлера) t=Ö(ax²+bx+c) +xÖaÞax²+bx+c=t²-2xtÖa+ax²; x=(t²-c)/2t(Öa)+b –рацион функ-ция от t Ч.Т.Д;Если а<0 с>0 (ax²+bx+c)>=0) то можно сделать замену Öax²+bx+c=xt+Öc {}{}Опред интеграл. Ограниченность интегрируемой ф-ии. {O}Разбиением t[a,b] называется произвольное мн-во точек xi, I=0,1,…,it удовлетворяющее условию x0=a<x1<x2<…<xit-1<xit{} Каждый из отрезков [xi-1,xi] назыв отрезком разбиения t{} Пусть ф-ция y=f(x) определена на [a,b] и t произвольное разбиение этого отрезка, в каждом отрезке разбиения в произвольном образе выберем (.) xiÎ[xi-1,xi] I=1,..,it и рассмотрим сумму st(f,x1,…,xit)= åI=1ixf(xI)Dx; -интегральная сумма {Определение} Число I –называется опред ò ф-ции y=f(x) на отр[a;b] и обозначается aòbf(x)dx Если "E>0 $dE=d(E)>0 | при любом разбиении s мелкости |t|<dE и любом выборе (.) xiÎ[xi-1,xi], I=1,…,it | åI=1itf(xi)Dx-I | <E Приэтомпишут I=limst |t|®0. {T}Если ф-ция интегрируема на отр. [a,b] то она ограничина на этом отрезке {Док-во} Пусть ф-ция y=f(x) интегрируема на [a,b] но не является ограниченным. на этом отрезке. На этом отрезке рассмотрим произвольное разбиение t отрезка [a,b] то она ограничена хотя бы на одном на одном отр. разбиения. Пусть это будет отр.[xj0-1,xj0] Тогда на этом отрезке существует последов-ть точек $ {xnjo}>0 | limn®¥f(xnjo)=¥ Рассмотрим сумму stI=1itf(xI)Dxi=f(xio)Dxjo +åI=1itf(x)Dxi=f(xjo)Dxjo+B Зафиксируем произвольным образом xiÎ[xi-1,xi] i¹jolimst(f,x1,…,x0n,..,xit) =lim(f(xjo)Dxjo+B)=¥m>0 существует n0 | st(f,x1,…,xjo(n),…,xit)>m Отсюда Þ, что интегр сумма при мелкости разбеения |t|®0 не могут стремится ни к какому конечному результату. Предположим, что $I=lim|t|®0stÞ"E>0 $dE>0 | "t, |t|<dE и любой выбор точек xi вып-ся нер-во |dt-I|<EÞ|dt|=|dt-I+I|<|dt-I|+|I| <E+|I|; M=E+|I| при любом разбиении t в частности при при |t|<dE можно выбрать точки x1,..,xit такие, что |st|>MÞф-ция не может быть не ограничена на отр[a,b]. Ч.Т.Д.Ф-ла Ньтона-Лейбница aòbf(x)dx=Ф(b)-Ф(а)=Ф(х)|аb –(1) {T} (основная теорема интегрального исчисления) Пусть ф-ция y=f(x) непрерывна на [a,b] и Ф(х)-какая либо из её первообразных. Þ (1) {Док-во} F(x)=aòxf(t)dtтогда ф-ции F(x) и Ф(x) первообразные для f(x) на [a,b] $F(x)=Ф(х)+С; aòxf(t)dt=Ф(х)+С Если x=a то aòаf(t)dt=0 Þ 0=Ф(а)+СÞ С=-Ф(а)Þaòxf(t)dt=Ф(х)-Ф(а) Поллагая в равенстве x=b приходим к вормуле (1) Ч.Т.Д.

18.Равномерная сх-сть ф-ых послед-стей и рядов.Признак Вейерштрасса.Ф-циональную посл-сть {fn)x)} xÎE наз. равномерно сходящейся ф-цией f на м-ж Е, если для Îe >0, сущ номер N, такой, что для " т х ÎE и "n >N вып-ся: |fn(x)-f(x)|<e. Если м-ж {fn)x)} равномерно сх-ся на м-ж Е, то она и просто сх-ся в ф-ции f на м-ж. Е тогда пишут: fn-f.

наз. равномерно сх-ся рядом, если на м-ж Е равномерно сх-ся посл-сть его частичной суммы., т. е. равномерная сх-сть ряда означает:Sn(x) -f(x) Не всякий сходящийся ряд является равномерно сх-ся, но всякий равномерно сх-ся – есть сх-ся Т. (Признак Вейерштрасса равномерной сх-ти ряда): Если числовой ряд: (7), где a >=0 сх-ся и для "xÎE и "n = 1,2… если выполняется нер-во un(x)|<=an(8), ряд (9) наз абс-но и равномерно сх-ся на м-ж Е.

Док-ва:

Абсолютная сх-сть в каждой т. х следует из неравенства (8) и сх-ти ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.

Зафиксируем произвольное e >0 В силу сх-ти ряда (7) сущ. номера N, "n >N и вып. нерво . Следовательно: |S(x)-Sn(x)| = . Это означает, что Sn(x) -S(x) что означает равномерную сх-сть ряда..

19. Степенные ряды. Теорема Абеля. Степенным рядом наз ф-ный ряд вида: a0+a1x+a2x2+… + anxn = (1) xÎR членами которого Степенным рядом наз также ряд: a0+a1(x-x0)+a2(x-x0)2… + an(x-x0)n = (2)Степенной ряд (1) сх-ся абс-но по крайней мере в т. х = 0, а ряд (2) в т х = х0, т.е в этих случаях все кроме 1 равны 0. являются степенные ф-ции. Числа anÎR, наз коэффициентами ряда(1). Ряд (2) сводится к ряду (1) по ф-ле у = х-х0.Т Абеля: 1Если степенной ряд (1) сх-ся в т. х0 ¹ 0, то он сх-ся абсолютно при любом х, для которого |x|<|x0|, Если степеннгой ряд (1) расх-ся в т. х0, то он расх-ся в любой т. х, для которой |x|>|x0|

20. Радиус сх-ти и интервал сх-ти степенного ряда.Рассмотрим степенной ряд: (1) Число (конечное или бесконечное) R>=0 наз радиусом сх-ти ряда (1) если для любого х такого, что |x|<R ряд (1) сх-ся, а для " х таких. что |x|>R ряд расх-ся интервалом сх-ти.Т1 Для всякого степенного ряда (1) сущ-ет радиус сх-ти R 0<=R<=+¥ при этом, если |x|<R, то в этой т. х ряд сх-ся абс-но. Если вместо х взять у = х-х0, то получится: интервал сх-ти: |x-x0<R| будет: (x0-R, x0+R)При этом если |x-x0|<R, то ряд сх-ся в т. x абс-но иначе расх-ся. На концах интервала, т. е. при x = -R, x=+R для ряда (1) или x = x0-R, x=x0+R для ряда (3) вопрос о сх-ти решается индивидуально. У некоторых рядов интервал сх-ти может охватывать всю числовую прямую при R = +¥ или вырождаться в одну точку при R=0.Интервал на числовой оси состоящий из т. х для которых |x|<R, т. е. (-R, +R) наз. Т2 Если для степенного ряда (1) сущ-ет предел (конечный или бесконечный): , то радиус сх-ти будет равен этому пределу. Если сущ-ет предел степенного ряда, то радиус сх-ти равен 1/пределот ряда Если степенной ряд (1) имеет радиус сх-ти R>0, то на любом отрезке действительной оси вида |[-r,r] целиком лежащем внутри интервала сх-ти ряд (1) сх-ся равномерно.

На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией.

Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда, то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда. Степенной ряд можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.

21. Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена.

Пусть(1) сх-ся при |x-x0|<R а его сумма является ф-лой f(x)= (2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1). Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно.

Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд:(6) наз рядом Тейлора ф-ции f в т, х0 При х0=0 ряд Тейлора принимает вид:

(6’) и называется ряд Маклорена.

Ряд Тейлора может:

1 Расх-ся всюду, кроме х=х0

2 Сх-ся, но не к исходной ф-ции f(x), а к какой-нибудь другой.

3 Сх-ся к исходной ф-ции f(x)

Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения доп-ных условий треб. ф-ла Тейлора.

Т2 Если ф-ция f(x) (n+1) дифф-ма на интервале (x0-h, x0+h) h>0, то для всех xÎ (x0-h, x0+h) имеет место ф-ла Тейлора:

где остаток rn(x) можно записать:

(8)

(9)

Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа.

Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.

Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е "xÎU(x0) |f(n)(x)|<=C, то ряд Тейлора этой ф-ции сх-ся в ф-ции f(x) для всех х из этой окрестности.

22. Разложение элементарных ф-ций в ряд Тейлора (Маклорена). 1 Разложение ф-ции ех ряд Маклорена. радиус сх-ти: R=¥ следовательно ряд абсолютно сх-ся на всей числовой прямой. Разложение sinx и cosx В степенной ряд Маклорена сх-ся на всей числовой оси, сх-ся на всей числовой оси, f(x) = (1+x)a наз. биномиальный ряд с показ-ем a.

Разложение ф-ции ln(1+x)

сх-ся при –1<x<=1

5 Разложение arctgx в степенной ряд Маклорена

сх-ся при -1<=x<=1.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно