Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Проектирование вертикально-сверлильного станка

Тип Реферат
Предмет Промышленность и производство
Просмотров
1316
Размер файла
499 б
Поделиться

Ознакомительный фрагмент работы:

Проектирование вертикально-сверлильного станка

Кафедра станков

КУРСОВОЙ ПРОЕКТ

на тему: «Проектирование вертикально-сверлильного станка»


Аннотация

Данный курсовой проект был разработан студентом четвертого курса машиностроительного факультета, группы. Было предложено спроектировать вертикально-сверлильный станок, по следующим данным:

- класс точности – нормальный;

- наибольший условный диаметр сверления – 18 мм.;

- наибольший ход шпинделя – 100 мм.;

- материал обрабатываемых изделий – сталь-чугун;

Курсовой проект содержит:

- пояснительную записку, из 29 листов, в которой было рассмотрено:

а) определение основных технических характеристик станка; б) проектирование кинематики станка, выбор компоновки; в) динамические и прочностные расчёты узлов, разрабатываемых конструктивно; г) описание структурной и кинематических схем, настройки станка; д) описание конструкции спроектированных узлов и систем станка;

- графический материал, содержащий четыре листа формата А1: кинематическая схема станка, развёртка привода главного движения, свёртка провода главного движения и коробка подач;

- спецификация привода главного движения;


Содержание

Введение. 4

1. Литературный обзор. 5

2. Определение основных технических характеристик станка. 8

3. Синтез и описание кинематической структуры станка. 10

4. Выбор и описание компоновки станка. 11

5. Проектирование и описание кинематической схемы станка. 14

5.1 Проектирование кинематики привода главного движения. 14

5.2 Проектирование кинематики привода подач. 17

6. Динамические, прочностные и другие необходимые расчёты проектируемых узлов22

7. Описание конструкции спроектированных узлов. 35

8. Описание системы смазки спроектированных узлов. 36

9. Описание системы управления станком. 38

10. Заключение. 40

Список использованной литературы.. 41


Введение

Современные металлорежущие станки - это высокоразвитые машины, включающие механические, электрические, электронные, гидравлические, пневматические и другие методы осуществления движением и управления циклом.

По конструкции и назначению трудно найти более разнообразные машины, чем металлорежущие станки. На них обрабатывают всевозможные детали – от мельчайших элементов часов и приборов до деталей, размеры которых достигают многих метров (турбины), прокатных станов. На станках обрабатывают и простые цилиндрические, и поверхности, описываемые сложными математическими уравнениями или заданные графически. При этом достигаются высокая точность обработки, измеряемая нередко долями микрометра. На станках обрабатывают детали из сталей и чугунов, из цветных, специальных жаропрочных, мягких твердых и других материалов. Современное станкостроение развивается быстрыми темпами. В решениях правительства по развитию станкостроения особое внимание обращено на опережающее развитие выпуска станков с числовым программным управлением, развитием производства тяжелых и уникальных станков.

Сверлильные станки предназначены для сверления глухих и сквозных отверстий, рассверливания, зенкерования, развертывания, растачивания и нарезания резьбы. Сверлильные станки подразделя­ются на вертикально-сверлильные настольные и наклонные, радиально-сверлильные, для глубокого сверления, центровальные и многошпиндельные.

1. Литературный обзор

Общий вид наиболее распространенного универсального одношпиндельного вертикально-сверлильного станка показан на рис. 1. Станок пред­назначен для работы в основных производственных цехах, а также в условиях единичного и мелкосерийного производства, в ремонтно-механических и инструментальных цехах.

вертикальный сверлильный станок кинематический

Рис.1 Вертикально-сверлильный станок.

На фундаментной плите 1 смонтирована колонна 3 коробчатой формы. В ее верхней части размещена шпиндельная головка 6, несущая электродвиатель 5 и шпиндель 7 с инструментом 8. На вертикальных направляющих колонны установлена шпиндельная бабка 4, внутри которой размещён механизм подачи, осуществляющий вертикаль­ное перемещение шпинделя. Поднимать и опу­скать шпиндель можно механически и вручную, с помощью штурвала 2. Для установки и закрепления приспособления с обрабатываемыми заготовками имеется стол 9. Его устанавливают на различной высоте, в зависимости от разме­ров обрабатываемых деталей.

Синтез методов и кинематики формообразования поверхностей резанием

Кп+Сл Кп+Cл

ФV1) ФV1)

ФS2) ФS2)

Уст(П3) Уст(П3)


Кп+Кс

ФV1)

ФS2)

Уст(П3)

Основные технические характеристики вертикально-сверлильных станков, близких по типоразмеру:

Параметры2А1502Г1752Н175М
Наибольший условный диаметр сверления в стали507575
Рабочая поверхность стола500х560 560х630710х1250
Наибольшее расстояние от торца шпинделя до рабочей поверхности стола800850828
Вылет шпинделя350400200-760
Наибольший ход шпинделя300--
Наибольшее вертикальное перемещение
сверлильной (револьверной) головки250710500
стола360--
Конус Морзе отверстия шпинделя561,2 или 3
Число скоростей шпинделя121212
Частота вращения шпинделя об/мин22-100018-80022-1000
Число подач шпинделя (револьверной головки)123312
Подача шпинделя (револьверной головки), мм/об0,05-2,250,018-4,50,05-2,24
Мощность электродвигателя в кВт7,01111
Габаритные размеры:
длина135514201500
ширина89019201800
высота293033853650
Масса, кг.187042505000

В качестве станка-прототипа выбираю вертикально-сверлильный станок 2А150 исходя из анализа его кинематики и технических характеристик.

2. Определение основных технических характеристик станка

1. Выбираем режущий инструмент

Спиральное сверло Dmax=18 мм и Dmin=3 мм. Материал режущей части быстрорежущая сталь Р6М5.

2. Назначаем режим резания

2.1 Назначаем подачи

Smin=0,1 мм/об

Smах=1,6 мм/об

2.2 Стойкость инструмента

Т=25 мин

2.3 Определяем допустимую скорость резания

при сверлении

где

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания,

где


- поправочный коэффициент, учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания;

-- поправочный коэффициент, учитывающий влияние инструментального материала на скорость резания

-- коэффициент, учитывающий глубину

3. Синтез и описание кинематической структуры станка

Рис. 2 Структурная схема вертикально-сверлильного станка.

Основным формообразующими движениями при сверлильных операциях являются: главное – вращательное движение В1 и движение подачи П2 шпинделя станка. Кинематические цепи, осуществляющие эти движения, имеют самостоятельные органы настройки iv и is,посредством которых устанавливается необходимая скорость вращения инструмента и его подача.

Вращение шпинделя осуществляется по цепи: от электродвигателя М по коробки скоростей iv, которая обеспечивает 12 частот вращения, передаётся на шпиндель 2. (М- iv-2)

Подача осуществляется по цепи: от электродвигателя М через коробку скоростей iv, через коробку подач is, которая обеспечивает 9 подач, вращение сообщается реечному колесу К, которое передаёт вращение на пиноль шпинделя с рейкой t. (М- iv-1- is-К-t)


4. Выбор и описание компоновки станка

Компоновка станка в значительной степени влияет на технико-экономические показатели. От компоновки зависит: жёсткость конструкции; тепловой баланс и температурная деформация; универсальность станка и его переналаживаемость; металлоёмкость; трудоёмкость изготовления, сборки; ремонтопригодность.

Рассмотрим три варианта компоновки вертикально-сверлильного станка и выберем один:

Структурная формула данной компоновки: 0ZCv

Достоинства: жесткая конструкция станины.

Недостаток: ограниченные габариты обрабатываемой детали, трудность в сборки, при износе стола, куда устанавливается деталь, нету возможности замены его, при малых габаритах обрабатываемой детали уменьшается жесткость шпинделя, т.к. увеличивается величина вылета.


Структурная формула данной компоновки: Z0ZCv

Достоинства: можно производить демонтаж стола, увеличиваются габариты обрабатываемой детали, возможность обеспечение жесткости шпинделя, за счёт подвода обрабатываемой детали к шпинделю.

Недостаток: уменьшается жёсткость из-за стола, а следовательно уменьшается точность позиционирования.

Структурная формула данной компоновки: Z0ZZCv

Достоинства: можно производить демонтаж стола, простота сборки станка, т.к. коробку скоростей и подач можно собрать отдельно от станины, увеличиваются габариты обрабатываемой детали.

Недостаток: уменьшается жёсткость не только из-за стола, но и из-за возможности перемещать шпиндельный узел, а следовательно уменьшается точность обработки.

1 – деталь; 2 – станина станка; 3 - коробка скоростей и подач; 4 – шпиндель; 5 – стол.

Из рассмотренных вариантов выбираем второй, так как он самый оптимальный по жёсткости и точности.


5. Проектирование и описание кинематической схемы станка

5.1 Проектирование кинематики привода главного движения

Определяем предельный частоты вращения:

Диапазон регулирования Rn частот вращения исполнительного органа

Определяем число ступеней коробки скоростей, при j=1,41:

Проверяем возможность осуществления простой мощности станка:


Для прямозубых колес С=8

Значит структура простая. Из множества возможных вариантов порядка расположения и переключения групповых передач выбираем вариант при котором вес и габариты проектируемого привода минимальны.

Проверяем осуществимость принятого варианта структуры привода по диапазону регулирования группы по условию

- принятый вариант осуществим.

Рис. 3 Структурная сетка.


Рис. 4 График частот вращения.

Передаточные отношения принимаем:

Исходя из этого, рассчитываем числа зубьев колёс:

i1=1/2 i2=5/7 i3=1/1

a1+b1=3 a2+b2=12 a3+b3=2

Наименьшее общее кратное равно 12, т.к. Zmin=18.

Тогда Z1=20, Z2=40, Z3=25, Z4=35, Z5=30, Z6=30

i4=19/53 i5=1/1

a4+b4=72 a5+b5=2


Наименьшее общее кратное равно 72, при условии, что Zmin=18.

Тогда Z7=19, Z8=53, Z9=38, Z10=38

i6=1/4 i7=2/1

a6+b6=5 a7+b7=3

Наименьшее общее кратное равно 15, при условии, что Zmin=19.

Тогда Z11=20, Z12=80, Z13=80, Z14=20.

Рис. 5 Кинематическая схема привода.

5.2 Проектирование кинематики привода подач


Диапазон регулирования Rn подач исполнительного органа

Определяем число ступеней коробки подач, при j=1,41:

Проверяем возможность осуществления простой мощности станка:

Для прямозубых колес С=8

Значит структура простая.

Из множества возможных вариантов порядка расположения и переключения групповых передач выбираем вариант при котором вес и габариты проектируемого привода минимальны.


Проверяем осуществимость принятого варианта структуры привода по диапазону регулирования группы по условию

- принятый вариант осуществим.

Рис. 6 Структурная сетка привода подач.

Передаточные отношения принимаем:

Исходя из этого, рассчитываем числа зубьев колёс:

i1=1/2 i2=5/7 i3=1/1

a1+b1=3 a2+b2=12 a3+b3=2

Наименьшее общее кратное равно 12, т.к. Zmin=17.


Тогда Z1=20, Z2=40, Z3=25, Z4=35, Z5=30, Z6=30

i4=1/4 i5=1/2 i6=2/1

a4+b4=5 a5+b5=3 a6+b6=3

Наименьшее общее кратное равно 15, при условии, что Zmin=17.

Тогда Z7=19, Z8=76, Z9=30, Z10=60, Z11=60, Z12=30.

Определяем минимальное значение частоты вращения последнего вращающегося звена в цепи подачи.

где Smin – минимальная подача (значение из стандартного ряда);

Sт.в. – шаг тягового вала;

Определяем минимальное передаточное отношение кинематической цепи подач:

где n0 – один оборот шпинделя;


Рис.7 График чисел подач.

6. Динамические, прочностные и другие необходимые расчёты проектируемых узлов

1. Частота вращения на валах

nI=nдв=955 мин-1

nII=800 мин-1

nIII-IV=600 мин-1

nV=250 мин-1

Угловые скорости на валах привода

с-1

с-1

с-1

с-1

Определяем мощности на валах:

РI =7000 Вт

РII = РI·hрем ·hпод= 7000 ·0,96·0,995 = 6865,6 Вт

РIII = РII·hцил ·hпод= 6865,6·0,98·0,995 = 6794,2 Вт

РIV = РIII·hцил ·hпод=6794,2·0,98 ·0,995 = 6724,7 Вт

РV = РIV·hцил ·hпод=6724,7·0,98 ·0,995 = 6557,3 Вт

где ηпод=0,99 – КПД пары подшипников

ηцил=0,98 – КПД цилиндрической прямозубой передачи

Определяем передаваемые крутящие моменты:


ТIII=7000/104,2=67,18 Н∙м

ТIIIIII=6865,6/83,8=81,93 Н∙м

ТIIIIIIIII=6794,2/62,8=108,19 Н∙м

ТIVIVIV=6724,7/62,8=107,08 Н∙м

ТVVV=6557,3/26,2=250,29 Н∙м

2. Расчёт зубчатой передачи

2.1. Материал шестерни: сталь 45; 240¸285 НВ; sв=650¸850 МПа; sТ=580 МПа; вид термообработки – улучшение.

Материал колеса: сталь 40; 42¸50 HRCэ; sв=630¸780 МПа; sТ=400 МПа; вид термообработки – улучшение.

2.2. Определяем расчётный модуль зацепления

где

km=1,4

YFS – коэффициент, учитывающий форму зуба и равный 1.

ybd – коэффициент ширины шестерни относительно её ширины и равный 0,8.

kFb-коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца и равный 1,2.

kА-коэффициент внешней динамической нагрузки и равный 1.

m=1,87 мм.

Значение m округляется до ближайшей величины в соответствии с ГОСТ 9563-60: m=2 мм.

2.3. Определение размеров передач и колёс.

Определяем размеры венцов колёс:

для передачи Z1-Z2


d1=m∙Z1=2∙20=40 мм

d2=m∙Z2=2×40=80 мм

Диаметры вершин:

для Z1-Z2

da1=d1+2∙m=40+2∙2=44 мм

da2=d2+2∙m=80+2∙2=84 мм

Диаметры впадин:

для Z1-Z2

df1=d1-2,5∙m=40-2,5∙2=35 мм

df2=d2-2,5∙m=80-2,5∙2=75 мм

Ширина венцов колёс:

Принято Ка=495, КНβ=1,02

Допускаемое напряжение

для колеса МПа


Sн=1,2

МПа

Расчётное межосевое расстояние, мм

aw=0,5(d2+d1)=0,5(40+80)=60

Значение аw округляется до ближайшей величины в соответствии с ГОСТ 2185-66: аw=60

мм

Принимаем b=15 мм.

тогда ширина шестерни:

b1=b2+(3÷5)=28÷30, принимаем 20 мм.

2.4. Проверка на выносливость по контактным напряжениям

Определяем окружные скорости

для ступени Z1-Z2

м/с

Удельная расчётная окружная сила:

для ступени Z1-Z2


КНα=1 – для прямозубой передачи

КНβ=1,01

Н/мм

Н/мм

Расчётные контактные напряжения

sН=ZHZМ

ZМ=175 МПа

ZH=1,47

sН=175∙1,47 МПа

Условие контактной прочности для Z1-Z2 выполняется

Остальные размеры колёс рассчитываются аналогично и записываются в таблицу 1.


Таблица 1. Основные размеры и характеристики зубчатых колёс

ZДиаметры, мм

Число зубьев

колёс

Ширина зубчаты

венцов, мм

Отношение

b/d

ddadf
140443520200,5
280847540150,18
350544525200,4
470746535150,21
560645530200,33
660645530150,25
738423319250,65
810611010153200,19
972766738250,32
1072766738200,26
11505543,7520250,5
12200205193,7580200,1
13200205193,7580250,125
14505543,7520200,4

3. Предварительный расчёт валов

Для валов выбираем материал: Сталь 40Х ГОСТ 4543-71

Т – крутящий момент, Н∙мм

к] – допускаемое напряжение при кручении, МПа

к]=20...25

Выходной конец вала электродвигателя dI=28 мм

мм


Принимаем dII=25 мм

мм

Принимаем dIII=25 мм

мм

Принимаем dIV=30 мм

мм

Принимаем dV=35 мм

Термическая обработка: закалка + высокий отпуск НВ 230¸285.

4. Основной расчёт валов

Для проверки возьмём вал IV, на котором размещен блок из двух колёс и два одиночных колеса.

Окружное усилие в зацепление

Н

Н

Радиальное усилие в зацеплении


Fr1=107,08∙0,36=38,55 Н

Fr2=375,72∙0,36=135,26 Н

5. Проектный расчёт вала:

Вычисляем реакции в опорах А и В в плоскости XOZ

Вычисляем реакции в опорах А и В в плоскости YOZ

Вычисляем суммарные изгибающие моменты Миз в характерных участках вала Ми=, Н·м с построением эпюры изгибающих моментов Ми. рис.6.

На рис. 8 представлена эпюра крутящих моментов Т, Н·м, передаваемых валом.

Вычисляем эквивалентные изгибающие моменты Мэкв, Н·м в характерных точках

где a=s-1и/4·sои=280/4·480=0,146

Проверяем вал на усталостную прочность

Анализируя линию сечений вала, где приведённые напряжения равны допускаемым, можно сделать вывод, что потенциально слабым сечением вала является сечение с Ми=16,65 Н·м и Т=107,8 Н×м.

Выбираем тип концентратора напряжений и выбираем значение коэффициентов концентрации напряжений по изгибу и по кручению

ks=2,5; kt=1,8

Коэффициент запаса прочности вала по нормальным напряжениям

Ss=s-1/(sa·ksд)

s-1=280 МПа

sa=su=Mu·103/w

w=p·d3/32=3,14·253/32=1533

sa=su=16,65·103/1533=10,86

ksд=(ks/kd+1/kf-1)1/kv

kd=0,98

kf=0,89

kv=1,6

ksд=(2,5/0,98+1/0,89-1)1/1,6 =1,09

Ss=280/(10,86·1,09)=23,65

Коэффициент запаса по касательным напряжениям

St=t-1/(ta·ktд+yt·tm)

t-1=170 МПа

ta=tm=Т·103/2wp

wp=pd3/16=3,14·253/16=3068 МПа

tа=tm=107,8·103/2·3068=17,57

ktд=(kt/kd+1/kF-1)1/kv

kd=0,98

kF=0,89

kv=1,6

ktд=(1,25/0,98+1/0,89-1)1/1,6=0,87

yT=0

St=170/(17,57·0,87+0)=11,12

Общий запас сопротивления усталости

S=Ss·St/>Smin=1,5

условие выполняется


Рис. 8 Эпюры изгибающих моментов.


Подбор подшипников качения:

Диаметры шеек вала IV под подшипники были определены в предварительном расчёте валов и приняты d=25 мм.

1. Осевые составляющие от радиальных нагрузок в опорах Б и В, Н для подшипников:

Foc б(в)=е·Fr б(в)

F= Н

F= Н

Foc б=0,19·116,58=22,15 Н

Foc в=0,19·168,93=32,09 Н

2. Определяем величину и направление результирующей осевой силы,

2.1 Для схемы «в распор» подшипником В, Н осевая нагрузка которого

В этом случае осевая нагрузка для подшипника Б, Н.

Fаб=22,15 Н; Fав=22,15+32,09=54,24 Н

3.Для каждой опоры определяют соотношение


Fаб/(V·F)=22,15/(1·116,58)=0,19<e

Fав/(V·F)=54,24/(1·168,93)=0,32>е, то Х=0,41 и Y=0,87

4. Эквивалентная динамическая радиальная нагрузка, Н

Р=[X·V·F+Y·F]·kt·kб=[1·1·116,58+1·22,15]·1·1=138,73 Н

Р=[X·V·F+Y·F]kt·kб=[0,41·168,93+0,87·54,24]·1·1=116,45 Н

5. Эквивалентная динамическая радиальная нагрузка с учётом изменения внешней нагрузки привода, Н

Рrсрr·k

k=[S(Tk/T1)3(tk/Lh)](1/p); p=3,33

k=90001/3,33=15,39;

Рrср=2135 H

6. Расчётная долговечность работы подшипника, час

Lhрасч=106·(С/Рrcp)p/(60·n)=106·(21000/2135)3,33/(60·630)=53530

Исходя из этих расчётов выбираем роликовый радиально-упорный подшипник 7205А и 7206А по ГОСТ 27365-87.

7. Описание конструкции спроектированных узлов

На верхнем конце шпинделя нарезаны шлицы, которыми он входит внутрь втулки, полу­чая от неё вращение. Нижний участок его смонтирован на подшипниках в пиноли. Конструкция узла такова, что шпиндель, свободно вращаясь, не имеет осевого смещения относительно пиноли. Последняя, получая верти­кальную подачу от реечного колеса, увлекает за собой шпиндель. Когда при сверлении шпиндель перемещается вниз или вверх, возвращаясь в исход­ное положение, шлицевый участок его скользит в шлицах втулки без нарушения кинематической связи. Сила подачи при сверлении воспринимается упорным подшипником, смонтированным в нижней части пиноли, а сама пиноль перемещается в круговых направляющих корпуса шпиндельной бабки.

Нижний конец шпинделя имеет коническое отверстие определенного стандартного размера. В него вводится хвостовик инструмента и удержи­вается там силой трения. Шпиндель имеет отверстие, в которое вводится клин для выталкивания инструмента. В случае необходимости закрепления в шпинделе инструмента различных диаметров с хвостовиками, меньшими размера гнезда, применяют переходные втулки.

8. Описание системы смазки спроектированных узлов

Основное назначения системы смазки коробки скоростей и коробки подач сводится к уменьшению потерь мощности на трение, сохранению точности работы, предотвращению вибрации, снижению интенсивности износа трущихся поверхностей, а также к предохранению их от заедания, задирав и коррозии.

В качестве смазочных материалов для подшипников возможно применение масла индустриального 20 (веретенное 3) или турбинного 30 (турбинное УТ), т.к. диаметры валов под подшипники не превышают 60 мм, а число оборотов составляет 2000 мин-1.

В качестве смазочных материалов для зубчатых передач применяют жидкие минеральные масла. Выбор сорта минерального масла производится в зависимости от условий работы коробки скоростей и коробки подач, передаваемой мощности, окружной скорости в зацепление, а также температуры масла в картере коробок.

Также значение имеет вязкость, чем она меньше, тем выше окружная скорость т.к. в спроектированной коробке скоростей окружная скорость не превышает 2,5 м/с, то принимаем масло цилиндровое 24 (вискозин).

Кроме вязкости масла на выбор смазки зубчатых колёс большое влияние оказывает его маслянистость – способность образовывать на поверхности трение прочные абсорбированные плёнки с пониженным сопротивление сдвига.

Учёт маслянистости при выборе масла обеспечивает минимальный износ зубчатых передач, т.к. удельное давление при скорости 2,5-5 м/с составляет 1-5 кг/мм2, то выбранный сорт масла цилиндровое 24 (вискозин) удовлетворяет нашим условиям.

Все передачи и подшипники, расположенные в общем корпусе, целесообразно обслуживать от одно централизованной системы смазки, что позволяет применить один и тот же смазочный материл.

В спроектированном станке применяем картерную систему смазки, когда масло из общей ванны увлекается и разбрызгивается зубчатыми передачами, образующийся при этом туман смазывает размещённые внутри коробки подшипники и передачи. Кроме того, масло, стекая по стенкам корпуса, также попадает на подшипники качения. Зубчатое колесо, разбрызгивающее масло, не должно быть слишком глубоко погружено в ванну, т.к. излишне высокий уровень заливки масла приводит к потерям мощности и перегреву всей системы. Зубчатые цилиндрические колёса достаточно нагружать в масло наполовину высоты зуба.

9. Описание системы управления станком

Главным движение в станке является вращение шпинделя, которое он получает от электродвигателя мощностью №7 кВт через клиноременную передачу и коробку скоростей. Вращение шпинделя, с определённой частотой вращения, осуществляется за счёт переключения блоков зубчатых колёс при помощи двух рычагов. Осуществляется принцип управления с предварительным набором скоростей (преселективная система). Первый рычаг осуществляет передвижении первого блока колёс, второй рычаг – двух остальных. Исходя из этого, первый рычаг имеет три положения, второй четыре. И что бы получить необходимую частоту вращения шпинделя необходимо поставить рычаги в определённое положение.

Таблица 2. Управления коробкой скоростей.

Частота вращения шпинделя,

об/мин

Положение первого рычагаПоложение второго рычагаЗацепление колёс
1000II30/30→38/38→80/20
900III25/35→38/38→80/20
800III20/40→38/38→80/20
710IIV30/30→19/53→80/20
630III25/35→19/53→80/20
560IIII20/40→19/53→80/20
450IIIII30/30→38/38→20/80
355IIIV25/35→38/38→20/80
250IIII20/40→38/38→20/80
180IIIII30/30→19/53→20/80
125IIIIII25/35→19/53→20/80
22,4IIIIV20/40→19/53→20/80

По такому же принципу осуществляется переключения коробки подач. Она имеет один рычаг, который передвигает два зубчатых колёс.


Таблица 3. Управления коробкой подач.

Подача шпинделя,

мм/мин

Положение рычагаЗацепление колёс
1,6I1 об.ш.→30/30→60/30→1/52→30/6
1,12II1 об.ш.→25/35→60/30→1/52→30/6
0,80III1 об.ш.→20/40→60/30→1/52→30/6
0,56IV1 об.ш.→30/30→30/60→1/52→30/6
0,40V1 об.ш.→25/35→30/60→1/52→30/6
0,28VI1 об.ш.→20/40→30/60→1/52→30/6
0,20VII1 об.ш.→30/30→19/76→1/52→30/6
0,14VIII1 об.ш.→25/35→19/76→1/52→30/6
0,1IX1 об.ш.→20/40→19/76→1/52→30/6

Перемещение шпинделя также можно осуществлять в ручную.

Заключение

Вертикально-сверлильные станки классифицируются по основным размерам: наибольшему диаметру обрабатываемого отверстия D.

По точности различают станки нормальной точности – Н, повышенной точности – П, высокой точности – В, особо высокой точности – А, особо точные – С.

Станком-прототипом данного спроектированного станка является вертикально-сверлильный станок модели 2А150.

На спроектированном станке могут выполняться следующие операции:

• сверление глухих, сквозных и ступенчатых отверстий;

• зенкерование отверстий;

• развёртывание отверстий;

• нарезание внутренней резьбы метчиком;

Список использованной литературы

1. Общемашиностроительные нормативы режимов резания для технического нормирования работ по МРС, ч. I и II. Москва. Машиностроение. 1974 г.

2. Данилов В.А.”Методические указания к курсовому проекту по курсу МРС”, 1977 г.

3. Кузьмин”Конструирование деталей машин”

4. Государственный стандарт ЕСКД.

5. Свирщевский Ю.И.”Расчет и конструирование коробок скоростей и подач.” 1976 г.

6. Анурьев В.И.”Справочник конструктора-машиностроителя”. Москва. Машиностроение. 1974 г.

7. Кучер А.М.”МРС. Основы конструирования и расчет.”Ленинград. 1970 г.

8. Режимы резания металла. Справочник. Москва. 1972 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно