Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Гидравлический расчет проточной части центробежного насоса НЦВС 40 30

Тип Реферат
Предмет Промышленность и производство
Просмотров
643
Размер файла
364 б
Поделиться

Ознакомительный фрагмент работы:

Гидравлический расчет проточной части центробежного насоса НЦВС 40 30

Содержание

1. ОПИСАНИЕ ЦЕНТРОБЕЖНОГО НАСОСА

2. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПРОТОЧНОЙ ЧАСТИ ЦЕНТРОБЕЖНОГО НАСОСА НЦВС40/30

2.1 Расчет основных параметров насоса

2.2 Определение основных размеров рабочего колеса

2.3 Профилирование канала рабочего колеса в меридиальном сечении

2.4 Профилирование лопаток рабочего колеса

2.5 Расчет спиральной камеры кругового сечения

2.6 Подвод жидкости к рабочему колесу

2.7 План скоростей потока жидкостей на входе и выходе рабочего колеса

2.8 Определение осевых сил и выбор устройства для уравнения осевых сил

2.9 Расчет объемных потерь

2.10 Расчет мощности электродвигателя

2.11 Построение напорных характеристик

2.12 Выбор материалов для основных частей насоса

3. РАСЧЕТ ДЕТАЛЕЙ НАСОСА НА ПРОЧНОСТЬ

3.1 Расчет на прочность вала насоса

3.2 Пример расчета на прочность вала насоса типа НЦВ 40/30

3.3 Проверка прочности шпоночного соединения

3.4 Расчет колеса насоса на прочность

3.5 Расчет лопатки рабочего колеса на прочность

3.6 Расчет прочности корпуса насоса

4. ЭКСПЛУАТАЦИЯ И ОБСЛУЖИВАНИЕ ЦЕНТРОБЕЖНОГО НАСОСА НЦВ 40130

5. НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ БАЛЛАСТНОЙ СИСТЕМЫ

СПИСОК ЛИТЕРАТУРЫ


1. Описание центробежного насоса НЦВС 40/30

Подача насосаМ340
НапорМ30±3%
Давление на входе в насосМПа0,15
Тип эдектродвигателяВП32М
Мощность электродвигателякВт11
НапряжениеV220
Частота вращенияМин-13000
Исполнение электродвигателяВ3
Внешняя утечка через уплотненияЛ/23
Кпд насоса% не менее50
Масса сухого насосакг210
Кавитационный запасМ4
Коэффициент быстроходности121
Перекачиваемая среда пресная: морская вода

Размеры

-Высота длина агрегата

-Диаметр входного патрубка

-Диаметр выходного патрубка

мм750
мм80
мм80

Конструкция и принцип работы насоса

Электронасос представляет собой моноблок, состоящий из одноступенчатого центробежного насоса и электродвигателя.

Центробежный насос состоит из корпуса, крышки, колеса, фонаря, узла уплотнения.

Корпус насоса прикреплен к фонарю, который прикреплен на фланец электродвигателя.

Рабочее колесо насажено на удлиненный конец электродвигателя и укреплено по средствам шпонки, шайбы и гайки рабочего колеса.

Вал электродвигателя защищен от подноса сальниковой набивкой, защитной втулкой.

Подвод перекачиваемой жидкости осевой. С помощью колена его можно сделать радиальным.

В крышке корпуса установлено мягкое или торцовое уплотнение, к которому из напорной полости подводится жидкость для образования гидравлического затвора и охлаждения.

Крепление электронасоса к судовому фундаменту. Осуществляется одним из трех видов фундамента: нижнем, среднем, боковом.

На электронасос закреплена стрелка, указывающая вращение вала. Принцип работы насоса заключается в следующем:

- Жидкость получает движение от непрерывного вращения рабочего колеса, под действием центробежной силы, развивающейся в колесе, при его вращении, отбрасываются от центра колеса к периферии, перемещать вдоль лопаток, поступает в спиральный отвод, а из него в напорный патрубок.

Электронасос работает при снижении подачи до 10% от номинальной и увеличении подачи до максимальной. С учетом допускаемой нагрузки электродвигателя и без кавитационной работы.


2. Гидравлический расчет проточной части центробежного насоса НЦВС 40/30

2.1.1Расчет основных параметров насоса

Выбор системы насоса определяется коэффициентом быстроходности по формуле

- угловая скорость С-1

h = частота вращения, мин-1

QS – подача, м3

H – напор, дм/кг

ηS =

Практика показывает, что коэффициент быстроходности (ηS) судового насоса с удовлетворительным КПД должен быть в пределах:

ηS = 80-150; .

В нашем случае принимаем:

(Рис. 2.1.)

2.1.2 Критический кавитационный запас энергии определяется по формуле:

дм/кг, где

g – ускорение сил тяжести, м3

ρ – плотность перекачиваемой жидкости, кг/м3

Ра – давление на выходе, Па

Рn – давление парообразование при заданной температуре, Па

А – коэффициент запаса

HBc-геометрическая высота всасывания, м

hTn- гидравлические потери в прямом трубопроводе, Дм/кг

А = 2; Н = 4 м; Ра = 9,8 · 104 Па;

Принимаем

hТn= 15 дм/кг

дм/кг

2.1.3 Максимально допустимая частота вращения определяется по формуле

мин-1, где

Скр – кавитационный коэффициент быстроходности, выбирается в зависимости от nS: для циркулярного насоса Скр = 1000чQ1 – принимаем равным QTk имеет колесо с односторонним всасыванием.


мин-1

Рабочая частота меньше максимальной.

2.1.4 Приведенный диаметр входа в колесо определяется по формуле:

мм

D1прав – mm

n= мин-1

D1прав = 4 · 103 · = 61,9 мм

2.1.5 Гидравлический КПД насоса определяется по формуле Ламакина А. А.

, где

D1прав – мм

2.1.6 Объемный КПД насоса определяется по формуле

2.1.7 Максимальный КПД насоса

Механический КПД насоса принимается:

Принимаем ηмех=0,95

2.1.8 Полный КПД насоса

2.1.9 Мощность, потребляемая насосом (колесом)

кВт

вт

2.1.10 Мощность на валу электродвигателя с учетом 10% запаса

NДВ=1,1·N кВт

NДВ=1,1·4425,69=4868,26 вт

2.2 Определение основных размеров рабочего колеса

2.2.1 Крутящий момент на валу насоса.

Н,М, где (2.10)

η– обороты вала насоса, Мин-1

кгс · м = 26,13 Н.М

2.2.2 Диаметр вала насоса

М., где

Zкр – допускаемое значение напряжения на кручение для стальных валов, Zкр= 130 кг/см2

см

2.2.3 Диаметр вала с учетом шпонки, определяется dв

dв= 3,2 см = 0,032 м

2.2.4 Концевой диаметр втулки колеса

dвт=(1,25 – 1,45) · dв мм

dвт=(1,35 ·0,032) = 0,0432 м

2.2.5 Расчетная производительность колеса с учетом потерь

2.2.6 Скорость жидкости во входе сечений рабочего колеса в первом приближении определяется по формуле Руднева С. С.

м/с, где

Qґ - м3

η – мин-1

м/с

2.2.7 Диаметр выхода в колесо

(м)

D0=0,6192 + 0,04322 = 0,0755 м

2.2.8 Окончательная скорость выхода:

м/с

м/с

2.2.9 Радиус средней точки входной кромки лопатки:

м

м

2.2.10 Меридиальная составляющая абсолютной скорости потока до стечения сечения лопасти принимается равной скорости на выходе:

Сґм= с0=3,82 м/с

2.2.11 Ширина водного сечения канала в меридиальном сечении определяется из уравнения неразрывности:

м

2.1.12 Коэффициент смещения сечения телом лопаток:

К1= 1,1 – 1,15

Принимаем К = 1,15

2.2.13 Меридиальная составляющая абсолютной скорости с учетом стеснения сечения телом лопаток:

Сm1 = K1 · Cґm м/с

Сm1 = 1,15 · 3,82 = 4,39 м/с

2.2.14 Переносная скорость при входе в кольцо:

м/с

U1 = 3,14 · 0,0,3 = 9,42 м/с

2.2.15 Входной угол без ударного поступления потока на лопатку определяется по формуле:

Β1.0 = 27°

2.2.16 Угол атаки (угол между направляющим β1.0 лопатки и относительной скоростью W1).

Для уменьшения гидравлических сил, потерь в области рабочего колеса и увеличении его кавитационных свойств при проектировании насосов принимают угол атаки, равный:

δ = 3 : 8°

Принимаем: δ = 7°

2.2.17 δ и β1.0 определяем входной угол наклона лопатки.

β11.0 + δ

β1 =27+7=34°

2.2.18 Геометрический напор колеса

дж/кг

дж/кг

2.2.19 окружная скорость в первом приближении

м/с, где

Кu2 – коэффициент отношения окружной составляющей абсолютной скорости при выходе потока из колеса U2. Принимаем Кu2 = 0,5

м/с

2.2.20 Наружный радиус колеса в первом приближении

м

м

2.2.21 Меридиальная составляющая абсолютной скорости потока на выходе из колеса без учета стеснения:

м/с

м/с

2.2.22 Коэффициент стеснения потока сечения лопатки на выходе из колеса:

К2 = (1,05 – 1,1) = 1,1

2.2.23 Отношение относительных скоростей входа и выхода принимаются равными.

W1/W2 = 1,15

2.24 Угол выхода лопатки определяется по выбранному отношению: ,

относительно скоростей по формуле:

Для современных насосов β2 = 17 - 30°

2.2.25 Наиболее выгодное число лопаток

Z = 6 лопаток

2.2.26 Коэффициент ψ определяется по формуле:

Ψ = (0,55 – 0,65) + 0,6· sinβ2

Коэффициент в скобках зависит от шероховатости проточной части рабочего колеса.

Ψ = (0,55 – 0,65) + 0,6· sin26° = 0,808

2.2.27 Поправочный коэффициент, учитывающий конечное число лопаток, определяется по формуле:

2.2.28 Расчетный напор

Н∞(1+Р)·НТ Дж/кг

Н∞(1+0,41)·357,1=528,89 Дж/кг

2.2.29 Меридиальная составляющая скорости потока c учетом стеснения телом лопатки на выходе:

м/с

м/с

2.2.30 наружный радиус рабочего колеса

м

2.2.31 Наружный диаметр рабочего колеса

D2 = 2 · R2 м

D2 = 2 · 0,077 = 0,154 м

2.2.32 Ширина канала рабочего колеса на выходе

м

2.2.33 Толщина лопатки рабочего колеса выбирается в интервале δ = 2 – 9. Выбираем δ = 5 mm.

2.2.34 Проверка предварительно выбранных коэффициентов стеснения сечения телом лопаток

2.2.35 Относительная скорость на входе

м/с

2.2.36 Относительная скорость на выходе

м/с

2.3 Профилирование канала рабочего колеса в меридиальном сечении

Применяется линейный закон изменения Сґm1 до значения Сґm2 в функции от радиуса R.

Rвх=0,03 м = R1

Rвых=0,077 м = R6

Cmвх= 3,82 м/с

Cmвых= 3,06 м/с

Закон изменения ширины канала Bi в зависимости от Сmi имеет вид:

Изменение Cmi от Ri и Bi от Сmi и Ri как Сmi = f(R1) и Bi = f(Cmi; R1)

Можно изменить в табличной форме. (табл. 2.3.1.)

Таблица 2.3.1. Профилирование канала рабочего колеса

Ri (м)Сmi(м/с)Вi (м)
10,033,7990,016
20,03943,6110,0128
30,04483,4350,0109
40,05823,2590,0096
50,06763,0830,0087
60,0772,9060,0081

2.4 Профилирование лопаток рабочего колеса

Для создания более благоприятных условий для безотрывного протекания контура лопатки потоком принимают линейный закон изменения относительной скорости W в зависимости от радиуса колеса R1

W = f(R)

Wвх = W1 = 10,5 (м/с)

Wвых= Wc = 9,1 (м/с)

Закон изменения W от К имеет вид

W = 9,9 – 3,23 · R1

Имея функцию лопатки W = f(R) и Cmi = f(R) и значение жидкости лопатки δ1, можно определить угол наклона лопатки:

,

где .

Зависимость угла наклона лопатки от меридиальной составляющей абсолютной скорости и радиуса будет иметь вид:

Приращение центрального угла

,

где d · Ri – приращение радиуса

βiи βi + 1 – значение подынтегральной функции в начале и конце участка

Δφi – приращение центрального угла.

Значение центрального угла определяется интегрированием:

Суммарное значение центрального угла определяется по формуле

Расчет профиля лопатки сводим в таблице 2.4.1.

Таблица 2.4.1. Расчет профиля лопатки

123456
Ri0,030,0390,0480,0580,06760,077
B0,0160,01280,10920,00960,00870,0081
Cґm3,7993,6113,4953,9593,0832,906
W10,510,229,949,669,389,1
Cґm/W0,3620,5530,3460,3370,3290,319
T0,0310,04120,05110,06090,07070,0806
δ5 · 10-35 · 10-35 · 10-35 · 10-35 · 10-35 · 10-3
δ /t0,1590,12130,0970,0820,07070,062
0,5210,4740,4440,4190,39970,381
β031,428,2926,3524,7823,5622,39
tgβ0,610,540,490,460,440,41
ΔRґi00,0090,0090,0090,0090,009
50,8244,4139,5935,4932,6531,68
Δφi = ΔRi +00,420,370,330,310,297
024,0745,2964,281,9799
0,420,791,121,431,727
04741,837,3533,6231,68

Исползуя полученные значения строим профиль лопаток (см. рис. 2.3.).

2.5 Расчет спиральной камеры кругового сечения

2.5.1 радиус контрольной цилиндрической поверхности охватывающей колесо на некотором расстоянии, достаточном для выравнивания пульсации скорости вызываемой конечным числом лопаток в колесе, находится по формуле:

м

м

2.5.2 Ширина входа в спираль с учетом осевого приращения колеса

м

2.5.3 Радиус кругового сечения спиральной камеры

,

где k – коэффициент, который находится по формуле

Радиус спиральной камеры определяется для восьми сечений, для различных значений угла φ, которым задается. Расчет радиусов ведем в табличной форме (табл. 2.5.3.).


Таблица 2.5.3.Расчет радиусов

φ°ρR0=R3минRc=R3+2ρ
12345678
I45°0,00020,00040,0000320,0056490,005850,085150,091
II90° 0,00040,00080,0000640,007990,008390,087690,9608
III135° 0,00060,00120,0000950,009790,010390,089690,10008
IV180° 0,00080,00160,0001280,0112990,0120990,0913990,103498
V225° 0,0010,00210,000160,0126340,013630,092930,10656
VI270° 0,00120,00240,000190,0138390,015040,094340,10938
VII315° 0,00140,00260,0002230,0149480,0163480,0956480,111996
VIII360°0,00160,00320,0002550,015980,017580,096880,11946

2.6 Подвод жидкости к рабочему колесу

Форма подводящего канала к рабочему колесу оказывает существенное влияние на равномерное распределение скоростей на входе в колесо, а так же на КПД и кавитационные качества. При консольном расположении рабочего колеса наилучшим типом подводящего канала является осевой конический патрубок (конфузор), который, сужаясь по направлению к колесу, обеспечивает повышение скорости потока на 15-20% равномерный ассиметричный поток на входе в колесо. Размер входного патрубка определяется по сечению всасывающего патрубка, который рассчитывается, исходя извеличины допускаемых гидравлических сопротивлений. Для насосов повышенной быстроходности в патрубке устанавливается втулка обтекаемой формы, соединяется с ним плоскими ребрами, что обеспечивает отсутствие закручивания потока на входе в рабочее колесо.

Для насосов, вал которых опирается на подшипники с двух сторон рабочего колеса, применяется спиральный подвод.

2.7 План скоростей потока жидкостей на входе и выходе рабочего колеса

Характеристика потока в любой точке определяется величиной и направлением скоростей, для чего должен быть построен план, или треугольник скоростей. Абсолютная скорость частицы жидкости в каждой точке колеса при его вращении складывается из переносной окружной скорости колеса и относительной скорости по лопасти колеса.

Построение треугольника скоростей ведется на профиле лопатки (рис. 2.5.)

2.8 Определение осевых сил, выбор устройства для уравнения осевых сил

2.8.1 Гидравлическая сила, действующая на рабочее колесо:

,

где θ – объемный вес, кг/м3; γ = 1000 кг/м3

k = r0 +d1 м,

где r0 – радиус входа в колесо

d – толщина обвода колеса на выходе, d = 7-10 мм

d = 7,5 мм

rBT= (1,12 – 1,5) · 0,071 = 0,0132 – 0,0165

Принимаем

rBT= 0,016

HiТпот = ρ · H17 м.вод.ст

HiТпот = 0,7 · 35,71 = 25,48 м.вод.ст

Н

2.8.2 Сила реакции, возникающая от изменения направления движения воды в рабочем колесе.

Н,

где С0 – скорость входа, м/с

Н

2.8.3 Дополнительная осевая сила возникающая при аварийном износе переднего уплотнителя определяется по формуле Ломакина А. А.

(Н),

где r2 – наружный радиус рабочего колеса, м

U2 – окружная скорость колеса, м/с

r1 – радиус входа с учетом толщины обвода, м

ℓ - длина щелевого уплотнения, м; ℓ = 10 ч 25 мм.

Принимаем ℓ = 20 мм.

Н

2.8.4 Результирующая гидравлическая осевая сила

P = p1 + p3 + p2 (H)

Р = 662,51 + 129,1 - 35,1 = 756,56 Н

2.8.5 Управление рабочих колес одноступенчатых насосов чаще всего выполняется с помощью разгрузочных отверстий в задней стенке колеса. Этот способ управляющей осевой силы состоит в том, что плоскость за задней стенкой рабочего колеса, образованная неуравновешенной его площади и стенкой корпуса насоса, соединяется с всасывающей полостью колеса или насоса.

2.9 Расчет объемных потерь

2.9.1 Потенциальный напор в рабочем колесе

Нпот= ρ · Нiт (дж/кг)

Нпот= 0,7 · 357 = 249,97 дж/кг = 25,48 м.вод.ст.

2.9.2 Перепад напора на концах уплотнения рабочего колеса определяется по формуле:

(дж/кг)

R2 – диаметр выхода из насоса, мм

R1 = R0 + d

D – толщина отвода на выходе, d = 5,5 мм

дж/кг = 25,34 м.вод.ст.

2.9.3 Величина радиального зазора

B1 = 0,35 мм

Максимально допустимый зазор определяется по формуле:

В = 0,3 + 0,04 · Ду, мм,

где Ду – диаметр уплотнения, Ду = 0,09

В = 0,3 + +0,04 · 0,09 = 0,3 мм

2.9.4 Длина щели уплотнения

ℓ = (10 – 25), м

Принимаем ℓ = 20

2.9.5 Коэффициент сопряжения

ℓ = (0,04 – 0,07) = 0,05 м

2.9.6 Коэффициент расхода

2.9.7 Утечки в уплотнении рабочего колеса

, м3

м3

2.9.8 Расчет уточненного объемного КПД.

2.10 Расчет мощности электродвигателя

2.10.1 Полный уточненный КПД

2.10.2 Мощность колеса

, Вт

Вт

2.10.3 Мощность двигателя с учетом 10% запаса

, Вт

вт

2.11 Построение напорных характеристик

2.11.1 Для построения напорных характеристик определяем коэффициент циркуляции

,

где ψ – коэффициент

Z – число лопаток

D1 – приведенный диаметр входа в колесо, м

D2 – диаметр колеса, м

2.11.2 Уточненная теоретическая передача

, м3

м3

2.11.3 Теоретический напор известен

Нт = 36,4 м.вод.ст.

2.11.4 Напорная характеристика насоса с бесконечным числом лопаток есть прямая в осях Q и Н.

При Qт∞ = 0; Нт∞ = /g = 24,182/9,81 = 59,6 м.вод.ст.

При Qт∞ = 0,0116; Нт∞ = Нт/k = 36,4/0,826 = 44,7 м.вод.ст.

2.11.5 Напорная теоретическая характеристика насоса с точным числом лопаток тоже есть прямая.

Определим коэффициенты этой прямой.

При Qт∞ = 0; Нт∞ = · k/g = (24,182/0,826)/9,81 = 48,5 м.вод.ст.

При Qт = Qт∞; Нт = К · Нт∞ = 36,4 · 0,826 = 30,1 м.вод.ст.

2.11.6. Гидравлические потери в рабочем колесе зависят от величины подачи Qn и определяется по формуле:

м.вод.ст.,

где η2 – гидравлический КПД

Нт – теоретический напор, м.вод.ст.

Qтi –теоретическая подача, м3

QТнап- номинальная подача, м3

2.11.7 Гидравлические потери на удар при входе потока на лопатки рабочего колеса определяется по формуле:

м.вод.ст.,

где Н – напор, м.вод.ст.

К – коэффициент циркуляции

U2 – окружная скорость

g – ускорение силы тяжести, м/с2

Нок1 = 1

м3/с,

где Нок – напор при закрытой крышке.

Значение величины h2 = f(QTi) приведены в таблице 2.11.

Таблица 2.11.1. Гидравлические потери

Значение подачи

QTi · 10-3m3

Гидравлические потери рабочего колеса h1 м.вод.ст.Суммарные потери на удар при выходе h2 м.вод.ст.

Суммарные гидравлические потери

hΣ = n1 = n2

002424
1,450,061515,114
2,90,2388,89,2
4,350,5366,567,5
5,80,9524,246,075
7,251,4882,515,37
8,72,1430,985,12

2.12 Выбор материалов для основных частей насоса

Выбор марок материалов производится по Белинову И. С. Справочник технолога механосборочного цеха судового завода «Транспорт», 1969 г.

2.12.1 Принимаем материал вала сталь марки 40х30 ГОСТ 5632-72

2.12.2 Принимаем материал корпуса и крышки, чугун марки С4 21х40

2.12.3 Принимаем материал рабочего колеса марки Бр. ОЦСН 3-7-5-1 ГОСТ 613-65

2.12.4 Патрубки изготовлены из бронзы Бр. ОЗЦ 7С5Н1 пригоден к эксплуатации 1000-12000 часов.


3. РАСЧЕТ ДЕТАЛЕЙ НАСОСА НА ПРОЧНОСТЬ

3.1 Расчет на прочность вала насоса

Так как вал насоса находится вертикально, то расчет ведется только на растяжение-сжатие и кручение.

3.1.1 расчет на растяжение – сжатие заключается в определении продольных сил N; нормальных напряжений δ и перемещений δ. Для этого строим их эпюры (СМ. РИС. 3.1.).

3.1.2 Определение осевой силы

Рос = Р – Рk, Н

где Р – осевая гидравлическая сила

Рk – вес колеса

Рk = мk · g,

где g – ускорение силы тяжести, м/с2

мk – масса колеса, кг

мk = Vk · gмк, кг,

где gмк – плотность материала колеса

Vk – объем материала колеса

3.1.3 На вал так же будет действовать собственная сила тяжести G, которая определяется по формуле:

G = mв · g, Н,

где mв – масса вала, кг

mв = vв · ρ, кг,

где vв – объем вала

ρ– плотность материала вала

vв = (πd2/4) ℓв,

где d – диаметр вала

3.1.4 Нормальное напряжение определяется по формуле

Δ = N/F, Мпа,

где N – продольная сила

F – площадь поперечного сечения

3.1.5 Определение перемещений начинают от подвального корпуса (сверху)

δ = δ · ℓ/Е, мм (3,8),

где δ – нормальное напряжение, Па

ℓ - длина участка вала

Е – модуль Юнга (для стали Е = 206 · 103 Па

3.1.6 Расчет на кручение заключается в определении крутящих моментов М1 напряжений и углов поворота φ, для этого строят их ЭПЮРЫ (см. рис. 3.2).

3.1.7 Определение крутящего момента определяют по формуле:

,

где Nдв – мощность двигателя

W – угловая скорость, Рад-1

3.1.8 напряжение определяется по формуле:

, мпа,

где Мкр – крутящий момент

Wр определяют по формуле.

3.1.9 Угол поворота определяется по формуле:

,

Где mk – крутящий момент

С – модуль сдвига: (С= 0,4Е = 82,4 · 103 Па)

Ур – полярный момент инерции сечения

3.1.10 Построение ЭПЮР переменных δ и углов поворота φ необходимо начать сверху.

3.1.11 Выбираем жесткое сечение, т.е. сечение в котором δ и достигают своих максимальных значений.

3.1.12 Расчет предельно допустимых напряжений в опасных сечениях

мПа (3.13)

мПа, (3.14)

где и - соответствующие пределы тягучести по предельным и касательным напряжениям, мПа

στ = 650 мПа

τt = 0,5στ = 377 мПа

ε – коэффициент, учитывающий влияние характеристик размеров вала на его прочность.

3.1.13 – рассчитывают коэффициент запаса статической прочности в опасных сечениях:

- от действий нормальных напряжений:

,

где σт и στ – предельно допустимое и расчетно-нормальные напряжения, мПа.

- от действия касательных напряжений:


где τг и Гτ – предельно допустимое и расчетно-касательное напряжения, мПа.

- от их совместного действия:

3.1.14 Проверяют условия статической прочности. Коэффициенты запаса статической прочности (nσ, nτ, n) должны быть не меньше допустимого значения nг, которое выбирают в зависимости от пластичности стали материала.

См. Ломеник А. А. «Центробежные и осевые насосы». Машиностроение, М-Л, 1966, стр. 32.

3.2 Пример расчета на прочность вала насоса типа НЦВ 40130

3.2.1 Определяем массу колеса по формуле 3.3.

кг

3.2.2 Определяем вес колеса по формуле 3.2.

Н

3.2.3 Определяем осевые силы по формуле 3.1.

Н

3.2.4 Строим ЭПЮРЫ продольных сил N с помощью формул 3.4, 3.5, 3.6.

Сечение I-I 0 ≤ х ≤ ℓ1

Х = 0; N = 0

H

Сечение II-II0 ≤ х ≤ ℓ2

Х = 0; N = 0,25 + Рос = 0,25 + 731,57 = 731,82 Н

х = ℓ2 = 0,005 м; N = 731,82 + g · ρg · π · d2 · ℓ2/4 = 9,81 · 7900 · 3,14 · 0,012 · 0,002/4 = 731,86

Сечение III-III 0 ≤ х ≤ ℓ3

Х=0; N = 731,86 Н

х = ℓ2 = 0,054 м

Н

Сечение IV-IV0 ≤ х ≤ ℓ4

Х = 0; N = 733,16 Н

х = ℓ2 = 0,094 м

Н

3.2.5 Строим ЭПЮР нормальных напряжений с помощью формулы.

Сечение I-I 0 ≤ х ≤ ℓ1

Х = 0; δ = 0

х = ℓ1 = 0,02 м; мПа

Сечение II-II0 ≤ х ≤ ℓ2

Х=0; мПа

Сечение III-III

Х=0; мПа

х = ℓ3 мПа

Сечение IV-IV0 ≤ х ≤ ℓ4

Х=0; мПа

х = ℓ4 = 0,094 мПа

3.2.6 Строим ЭПЮРЫ перемещений с помощью формулы 3.8.

Сечение IV-IV0 ≤ х ≤ ℓ4

Х=0: δIV-IV= 0,91 · 106 · 0,09/206 · 109 = 0,53 · 10-6 м

Сечение III-III 0 ≤ х ≤ ℓ3

Х=0: δIII-III= 0

х = ℓ3 = 0,054 δIII-III= 1,93 · 106 · 0,054/206 · 109 = 0,41 · 10-6 м

Сечение II-II0 ≤ х ≤ ℓ2

Х=0: δII-II= 0

х = ℓ2 = 0,002 δII-II= 6,47 · 106 · 0,002/206 · 109 = 0,16 · 10-6 м

Сечение I-I0 ≤ х ≤ ℓ1

Х=0: δI-I= 0

х = ℓ1 = 0,022 δI-I= 244 · 0,022/206 · 109 = 0,1 · 10-6 м

3.2.7 Абсолютное удлинение складывается из относительных по формуле:

(3.18)

δ4 = δIV-IV= 0,53 · 10-6 м

δ3 = δIV-IV+ δIII-III= 0,53 · 10-6 + 0,41 · 10-6 = 0,94 · 10-6 м

δ2 = δIIII-III+ δII-II= 0,94 · 10-6 + 0,16 · 10-6 = 1,1 · 10-6 м

δ1 = δIII-II+ δI-I= 1,1 · 10-6 + 0,0001 · 10-6 = 1,1001 · 10-6м

3.2.8 Строим ЭПЮРЫ крутящих моментов м с помощью формул 3.9 и 3.10.

Сечение II-IIи I-I исключаются, т.к. момент преломления в сечении III-III.

Сечение III-III :

мПа

Сечение IV-IV : мПа

3.2.9 Строим ЭПЮРЫ углов поворота φ с помощью формул 3.11 и 3.12.

Сечение III-III : φIII-III= 19,12 · 0,044/ рад

Сечение IV-IV : φIV-IV= 19,12 · 0,09/ рад

3.2.10 Аналогично абсолютному удалению

рад

3.2.11 Опасными сечениями являются III-IIIиII-II, т.к. δII =6,4 мПа δIII= 1,93 мПа τIII=9,15 мПа

3.2.12 Определяем предельно допустимые напряжения по формуле:

мПа

мПа

мПа

3.2.13 Коэффициент статического запаса прочности в опасных сечениях:

- от действия нормальных сил по формуле:

мПа

мПа

- от действия касательных сил по формуле:

мПа

- от их совместного действия по формуле:

3.2.14 Проверка условий статической прочности определяют отношением :

Для прочих материалов:

Коэффициент запаса статической прочности (ηδτ;η) не менее допустимого ητ, следовательно вал удовлетворяет условиям статической прочности.

3.3 Проверка прочности шпоночного соединения

В зависимости от диаметра и толщины ступицы выбираем шпонку с параметрами шпона 10х6х36 ГОСТ 23860-78.

3.3.1 Направление силы стеснения:

, Н/мм2,

где ℓ - длина шпонки, ℓ = 36 мм

n – высота шпонки, n = 10 мм

b – глубина шпонки паза, b = 5 мм

t – ширина шпонки

мПа

3.3.2 Допустимые напряжения

Условие прочности выполнено.

3.4 Расчет колеса насоса на прочность

Расчет прочности включает в себя расчет на прочность ступицы, а также расчет на прочность лопатки рабочего колеса.

3.4.1 Расчет на прочность ступицы колеса.

3.4.1.1 Усилия в контакте с передающей шпонкой определяется по формуле:

Z – число шпонок, Z = 1

b – ширина шпонки, b = 6 мм

Н

3.4.1.2 Площадь поверхности рабочего контакта определяется по формуле:

FCm = L· b1, мм2

где L – длина шпонки, L = 28 мм

FCm = 28 · 6 =168 мм2

3.4.1.3 Напряжение сжатия в ступице колеса определяется по формуле:

мПа

мПа

3.4.1.4 Запас прочности для ступицы колеса определяется по формуле:

,

где στ – предел текучести материала.

Для стали Ст45 στ = 290 мПа

3.5 Расчет лопатки рабочего колеса на прочность

3.5.1 Напряжение в лопасти от расчетного перепада давления напора определяется по формуле,

где - расчетный перепад давления, = 11,85

b – ширина лопатки, b = 12 мм

δ – толщина лопатки, δ = 3,5 мм

Напряжение лопасти рассчитывается по трем точкам: на входе, среднем диаметре, выходе:

мПа

Напряжение в лопасти от расчетного перепада давлений напора во всех трех точках одинаково.

3.5.2 Нагрузка, действующая на лопасть от центробежных сил на произвольном радиусе.

, мПа,

где - плотность материала кг/см3, = 250

W – относительная скорость с-1, (W = 300,39 с-1)

R – радиус закругления лопатки на входе, посередине, на выходе.

На входе: G = 250 · 3,5 · 300,392 = 197 мПа

По середине: G = 250 · 3,5 · 1,8 · 300,392 = 214 мПа

На выходе: G = 250 · 3,5 · 2,9 · 300,392 = 228 мПа

3.5.3 Напряжение изгиба лопасти на произвольном радиусе:

мПа (3.26)

На входе: мПа

По середине: мПа

На выходе: мПа

3.5.4 Суммарные напряжения в лопасти

, мПа

На входе: мПа

По середине: мПа

На выходе: мПа

3.5.5 Коэффициент запаса прочности определяется по формуле:

(3.28)

- допустимое условие прочности выполнено.


3.6 Расчет прочности корпуса насоса

Считаем оболочку насоса прочной, т.к. ,

где δ = 0,014 м – толщина оболочки

R = 0,123 м – радиус кривизны оболочки.

Напряжение в таких случаях можно определить по элементарной бесмоментной теории оболочки, в которой перемещается, принимается во внимание лишь растягивающее и смещающее напряжение изгиба и среза.

3.6.1 Растягивают напряжение в элементах в рамках безмоментной теории оболочек вращения.

3.6.1.1 Меридиальное напряжение

мПа (3.29)

мПа (3.29)

3.6.1.2 Окружное напряжение

мПа (3.30)

мПа (3.30)

3.6.1.3 Эквивалентное напряжение b1 в расчетном сечении

мПа (3.31)

мПа

3.6.1.4 Рассчитываем допустимые напряжения.

, (3.32)

где ε – коэффициент, учитывающий влияние характерных размеров (толщину стенки, радиусов в расчетном сечении δ, на величину допустимых напряжений, ε = 0,95

мПа

3.6.1.5 Определяем запас прочности

n – удовлетворяет условию прочности.


4 Эксплуатация и обслуживание центробежного

насоса НЦВС 40/30

Порядок установки и подготовка к пуску

При размещении обеспечить доступ при обслуживании.

При монтаже не допускать передачи усилий от трубопровода на насосо.

Перед монтажом выполнить требование по эксплуатации электронасоса.

Установить насос на фундамент, снять заглушки с патрубков.

Присоединить напорный, всасывающий трубопроводы, осмотрев их.

Установить контрольно-измерительные приборы.

Заполнить насос перекачиваемой жидкостью.

Проверить затяжку фланцевых соединений.

Проверить вращение двигателя кратковременным включением.

Порядок работы

Закрыть всасывание насоса, открыть нагнетание.

Включить электродвигатель.

Постепенно открыть всасывание и установить режим работы. Допускается производить запуск электродвигателя при открытой задвижке всасывающего нагнетательного трубопровода, если сопротивление сети обеспечивает работу без перегрузки.

Электронасос прост по конструкции и во время работы постоянного наблюдения не требуется, но периодически надо проверять утечки, показания манометров и нагрев подшипников электродвигателя.

Нормально допускаемое уплотнение сальников должно не превышать утечки указанных в формуляре. При увеличении утечки сальник подтянуть или добавить кольцо набивки, торцовое уплотнение разобрать, осмотреть и при необходимости заменить (если в течение 10-15 минут утечки не изменились).

Для остановки электронасоса выключите электродвигатель, закройте задвижки на напорных и всасывающих патрубках.

При длительном бездействии, минусовых температурах слить из насоса воду.

Все неисправности смотри в паспорте, прилагаемом к насосу.


5. НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ БАЛЛАСТНОЙ СИСТЕМЫ

Эксплуатацию корпуса судна обеспечивают так называемые трюмные системы: осушительная и балластная. Балластная система служит для удаления больших масс воды из танков. Она предусматривается на всех судах. Для приема и удаления водяного балласта в целях изменения осадки, дифферента, крена судна. Ею оборудуются все суда. На промысловых и транспортных судах балластная система размещается в междонном пространстве, в форпике и ахтерпике. Количество забортной воды, принимаемой в балластные цистерны, составляет 20-30% водоизмещения судна. Балластные насосы с трубопроводами и арматура располагаются в М.К.О. Балластную систему выполняют по централизованному или групповому принципу. На промысловых судах ее часто совмещают с осушительной.

На рисунке 5.1. показана схема балластной системы рыболовецкого судна типа БМРТ «Николай Чепик», выполненной по централизованному принципу. Система состоит из поршневого насоса – 1; трех- и двухклапанных коробок 4,5; приемного кингстона – 2; фильтра – 6; отливного клапана – 7; балластных трубопроводов – 8. Вся арматура имеет ручной привод и находится в машинном отделении – 9. Переключением клапанов – 10, 11, 12, 13, 14 и 15 на клапанных коробках можно принимать забортную воду: в цистерны самотеком или с помощью насоса, откачивать балласт за борт или перекачивать из танка в танк, находящихся по всему кораблю. Для балластировки днищевых танков достаточно открыть клапана в танки, которые нужно забалластировать и вода самотеком пойдет в них, с подвесными танками балластировку можно произвести только насосами. Прием балласта начинается с днищевых танков, при этом надо постоянно следить за креном. Расчеты по приемке производит второй помощник капитана, который говорит, сколько, куда брать балласта. После каждой операции по приемке клапана следует закрывать и следить за уровнем воды в танках. После окончания приемки производится запись в журнал расчетных операций, сколько было в танке до приемки, сколько приняли в М3 и в какие танки. Насосы в этой системе могут применяться разные, центробежные, поршневые, пропеллерные. Периодически производить проверку трубопроводов на подтекание и арматуры.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Артемов Г.К,, Симонов Р.Р. «Судовые центробежные насосы: конструкции и расчет»: Уч. Пос. Владивосток Дальрыбвтуз, 2000.- 81 с.

2. Блинов И.С. «Справочник технолога механосборочного цеха судоремонтного завода». – М.: Транспорт, 1979. – 704 с.

3. Будов В. М. «Судовые насосы: Справочник» - Л. Судостроение, 1988. – 432 с.

4. Воронов ВФ., Арцыков А П. «Судовые гидравлические машины». – Л.: Судостроение, 1977. – 301 с.

5. Гемиров Р.И. «Краткий справочник конструктора» - Л.: Машиностроение, 1983. – 464 с.

6. Гидравлический расчет судовых центробежных насосов: 4 ч. Пос. Б. Г. Денина – М.: В10.

7. Ломанин А.А. «Центробежные и осевые насосы» - Л.: Машиностроение, 1966. – 364 с.

8. Петрина Н.П. «Судовые насосы» - Л.: 1963. – 376 с.

9. Правила классификации и постройка морских судов. Российский морской Регистр судоходства. Т.2 – СПб , 1999. – 512 с.

10. Справочник судового электромеханика, Т.2. Судовое электрооборудование, 1980. – 624 с.

11. Черкасский В.М. «Насосы, вентиляторы, компрессоры» - М.: 1984. – 416 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно