Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Исследование распределения температуры в тонком цилиндрическом стержне

Тип Реферат
Предмет Математика
Просмотров
1603
Размер файла
106 б
Поделиться

Ознакомительный фрагмент работы:

Исследование распределения температуры в тонком цилиндрическом стержне

Санкт-Петербургский Государственный Технологический Институт

(Технический Университет)

Кафедра Факультет VIII

ПрикладнойКурс II

МатематикиГруппа 891

Дисциплина: Информатика – 2

Курсовая работа

Тема: «Исследование распределения температуры в тонком цилиндрическом стержне»

Руководитель:

Поляков В.О.

Исполнитель:

Солнцев П.В.

Санкт-Петербург 2001

Введение

В решении любой прикладной задачи можно выделить три основных этапа:

- построение математической модели исследуемого объекта

- выбор способа и алгоритма решения полученной модели

- численная реализация алгоритма

Цель данной работы – на примере исследования распределения температуры в тонком цилиндрическом стержне освоить основные методы приближённых вычислений, приобрести практические навыки самостоятельных исследований, существенно опирающихся на использование методов прикладной математики.

Содержание

1. Постановка задачи

1.1 Физическая модель

1.2 Математическая модель

2. Обработка результатов эксперимента

2.1 Задача регрессии. Метод наименьших квадратов.

2.2 Гипотеза об адекватности модели задачи регрессии

3. Нахождение коэффициента теплоотдачи a

3.1 Вычисление интеграла методом трапеций

3.2 Вычисление интеграла методом парабол (Симпсона)

4. Вычисление времени Т0 установления режима

4.1 Решение уравнения комбинированным методом

4.2 Решение уравнения методом итерраций

5. Решение краевой задачи (метод малого параметра)

6. Заключение

Литература

1. Постановка задачи

1.1 Физическая модель

В ряде практических задач возникает необходимость исследования распределения температуры вдоль тонкого цилиндрического стержня, помещённого в высокотемпературный поток жидкости или газа. Это исследование может проводиться либо на основе обработки эксперимента (измерение температуры в различных точках стержня), либо путём анализа соответствующей математической модели.

В настоящей работе используются оба подхода.

Тонкий цилиндрический стержень помещён в тепловой поток с постоянной температурой q, на концах стержня поддерживается постоянная температура q0.

1.2 Математическая модель

Совместим координатную ось абсцисс с продольной осью стержня с началом в середине стержня. Будем рассматривать задачу (распределения температуры по стержню) мосле момента установления режима Т0.


Первая математическая модель использует экспериментальные данные, при этом измеряют температуру Uiстержня в нескольких точках стержня с координатами xi. Результаты измерения Uiрассматривают как функцию регрессии и получают статистики. Учитывая чётность U(x) можно искать её в виде многочлена по чётным степеням x (ограничимся 4-ой степенью этого многочлена).

(1.1)

Задача сводится к отысканию оценок неизвестных параметров, т.е. коэффициентов a0 , a1и a2 , например, методом наименьших квадратов.

Вторая математическая модель, также использующая экспериментальные данные, состоит в применении интерполяционных формул и может употребляться, если погрешность измерений температуры Ui пренебрежимо мала, т.е. можно считать, что U(xi)=Ui


Третья математическая модель основана на использовании закона теплофизики. Можно доказать, что искомая функция U(x) имеет вид:

(1.2)

где l - коэффициент теплопроводности, a - коэффициент теплоотдачи, D – диаметр стержня, q - температура потока, в который помещён стержень.


Ищем U(x) как решение краевой задачи для уравнения (1.2) с граничными условиями:

(1.3)

на отрезке [-L|/2;L/2], где L – длина стержня, q0 - постоянная температура, поддерживаемая на концах стержня.

Коэффициент теплопроводности lзависит от температуры:


(1.4)

где l0 - начальное значение коэффициента теплопроводности, sl - вспомогательный коэффициент.


Коэффициент теплоотдачи a вычисляют по формуле:

(1.5)


т.е. как среднее значение функции

за некоторый отрезок времени от 0 до Т, здесь a0 - значение a при t стремящемся к бесконечности, b – известный коэффициент.


Время Т0, по истечении которого распределение температуры в стержне можно считать установившимся определяется по формуле:

(1.6)


где а – коэффициент температуропроводности, x - наименьший положительный корень уравнения:

(1.7)

Задание курсовой работы

Вариант № 136

Исходные данные:

1. L = 0.0386 м

2. D = 0,00386 м

3. q = 740 оС

4. q0 = 74 оС

5. l0 = 141,85 (Вт/м*К)

6. sl = 2,703*10-4

7. B = 6,789*10-7

8. a0 = 3,383*102 (Вт/м2*К)

9. T = 218 оС

10. А = 3,043*10-5 (м2/с)

11

X, мU, oC
0353
0,00386343
0,00772313
0,01158261
0,01544184
0,0193074

2. Обработка результатов эксперимента.

2.1 Задача регрессии. Метод наименьших квадратов.


Ищем функцию регрессии в виде (1.1). Оценки коэффициентов находим с помощью МНК, при этом наименьшими будут оценки, обеспечивающие минимум квадратов отклонений оценочной функции регрессии от экспериментальных значений температуры; суммирование ведут по всем экспериментальным точкам, т.е. минимум величины S:

(2.1)


В нашем случае необходимым т достаточным условием минимума S будут:

Где k = 0, 1, 2. (2,2)


Из уравнений (2.1) и (2.2) получаем:

(2.3)

Сумма

Система (2.3) примет вид:

(2.4)


В результате вычислений получаем Skи Vj. Обозначим матрицу коэффициентов уравнения (2.4) через “p”:

Методом Гаусса решаем систему (2.4) и найдём обратную матрицу p-1. В результате получаем:

Подставляя в (2.1) найденные значения оценок коэффициентов ак, находим минимальное значение суммы S:

Smin=0.7597

При построении доверительных интервалов для оценок коэффициентов определяем предварительно точечные оценки.


Предполагается, что экспериментальные значения xiизмерены с пренебрежимо малыми ошибками, а случайные ошибки измерения величины Ui независимы и распределены по нормальному закону с постоянной дисперсией s2, которая неизвестна. Для имеющихся измеренийтемпературы Uiнеизвестная дисперсия оценивается по формуле:

Где r – число степеней свободы системы, равное разности между количеством экспериментальных точек и количеством вычисляемых оценок коэффициентов, т.е. r = 3.

Оценка корреляционной матрицы имеет вид:

Оценки дисперсий параметров оценок коэффициентов найдём по формулам:

Где Sk – минор соответствующего диагонального элемента матрицы нормальной системы;

D - главный определитель нормальной системы.

В нашем случае:

S0=3.5438 10-22

S1=-8.9667 10-14

S2=6.3247 10-7


Откуда:

Найденные оценки коэффициентов распределены по нормальному закону, т.к. линейно зависят от линейно распределённых экспериментальных данных Ui.

Известно, что эти оценки несмещённые и эффективные. Тогда случайные величины:

Имеют распределения Стьюдента, а r = 3.


Выбираем доверительную вероятность b=0,9 и по таблице Стьюдента находим критическое значение gb равное 2,35, удовлетворяющее равенству:

Доверительные интервалы для коэффициентов:

(2.4*)


В нашем случае примут вид:

2.2 Проверка статистической гипотезы об адекватности модели задачи регрессии.


Имеется выборка объёма n экспериментальных значений (xi;Ui). Предполагаем, что ошибки измерения xiпренебрежимо малы, а случайные ошибки измерения температур Uiподчинены нормальному закону с постоянной дисперсией s2. Мы выбрали функцию регрессии в виде:

Выясним, нельзя ли было ограничиться многочленом второго порядка, т.е. функцией вида:

(2.5)


C помощью МНК можно найти оценки этих функций и несмещённый оценки дисперсии отдельного измерения Ui для этих случаев:

Где r1 = 4 (количество точек – 6, параметра – 2).


Нормальная система уравнений для определения новых оценок коэффициентов функции (2.5)с помощью МНК имеет вид:

(2.7)


Решая эту систему методом Гаусса, получим:

(2.8)

Чем лучше функция регрессии описывает эксперимент, тем меньше для неё должна быть оценка дисперсии отдельного измерения Ui, т.к. при плохом выборе функции в дисперсию войдут связанные с этим выбором дополнительные погрешности. Поэтому для того, чтобы сделать выбор между функциями U(x) и U(1)(x) нужно проверить значимость различия между соответствующими оценками дисперсии, т.е. проверить гипотезу:


Н0 – альтернативная гипотеза

Т.е. проверить, значимо ли уменьшение дисперсии при увеличении степени многочлена.


В качестве статического критерия рассмотрим случайную величину, равную:

(2.9)

имеющую распределение Фишера с(r ; r1) степенями свободы.Выбираем уровень распределения Фишера, находим критическое значение F*a, удовлетворяющее равенству: p(F>F*a)=a

В нашем случае F=349.02, а F*a=10,13.


Если бы выполнилось практически невозможное соотношение F>Fa, имевшее вероятность 0,01, то гипотезу Н0 пришлось бы отклонить. Но в нашем случае можно ограничиться многочленом

, коэффициенты в котором неодинаковы.

3. Нахождение коэффициента теплопроводности a.


Коэффициент a вычислим по формуле (1.5), обозначим:

(3.1)

Определим допустимую абсолютную погрешность величины интеграла I, исходя из требования, чтобы относительная погрешность вычисления a не превосходила 0,1%, т.е.:

(3.2)


Т.к. из (3.1) очевидно, что a>a0, то условие (3.2) заведомо будет выполнено, если:

(3.3)

Т.е. в качестве предельно допустимой абсолютной погрешности вычисления интеграла I возьмём d=0,001Т (3.4)

Т=218 оС, следовательно, d=0,218 оС.

3.1 Вычисление интеграла I методом трапеции

Использование теоретической оценки погрешности


Для обозначения требуемой точности количества частей n, на которые нужно разбить отрезок интегрирования [0;T] определяется по формуле:

, где M2=[f”(t)], t e [0;T], f(t)=e-bt3


Учитывая формулу (3.4) получаем:

(3.5)


Дифференцируя f(t), получим:

А необходимое условие экстремума: f”(t)-f’’’(t)=0, откуда получаем:

Далее вычисляем значения f’’(t) при t=t1, t=t2, t=0 и t=T, получаем:

f’’(t1)=1.5886 10-4

f’’(t2)=-1.6627 10-4

f’’(0)=0

f’’(T)=7.4782 10-6

Итак: M2=1,5886 10-4, откуда n=25.66; принимаем N=26.


Далее вычислим интеграл I:

Погрешность вычисления a:


3.2 Вычисление интеграла I методом парабол


При расчётах будем использовать теоретическую оценку погрешности с помощью правила Рунге. Для обеспечения заданной точности количество частей n, на которое следует разделить интервал интегрирования можно определить по формуле:

, откуда:

Нахождение М4 можно провести аналогично нахождению М2 в предыдущем пункте, но выражение для fIV(t) имеет довольно громоздкий вид. Поэтому правило Рунге – наиболее простой способ.

Обозначим через Inи I2nзначение интеграла I, полученное при разбиении промежутка интегрирования соответственно на n и 2n интервалов. Если выполнено равенство: |I2n-In| = 15d (*1), то |I-I2n|=d


Будем , начиная с n=2, удваивать n до тех пор, пока не начнёт выполняться неравенство (*1), тогда:

(3.6)


Согласно формуле парабол (3.7):

Результаты вычислений сведём в таблицу:

nInI2n
4102.11
8101.610.5017

По формуле (3.7) I = 101,61 что в пределах погрешности совпадает со значением, полученным по методу трапеций

n=8n=4
ti (8)y8ti (4)y4
0101
27.250.9864
54.50.895954.50.8959
81.750.6901
1090.41511090.4151
136.250.1796
163.50.0514163.50.0514
190.750.0089874
2180.000881792180.00088179

4. Вычисление времени Т0 установления режима

4.1 Решение уравнения комбинированным методом

Время установления режима определяется по формулам (1.6) и (1.7).

Проведём сначала отделение корней. Имеем y = ctg(x) и y = Ax. Приведём уравнение к виду: A x sin(x)-cos(x) = 0. Проведём процесс отделения корня.

F(x)-1-0.62850.4843
x0.010.050.1

т.е. x с [0.01;0.05]

Убедимся, что корень действительно существует и является единственным на выбранном интервале изоляции.

f(a) f(b)<0 – условие существования корня выполняется

f’(x) на [a;b] – знакопостоянна: f’(x)>0 – условие единственности также выполняется. Проведём уточнение с погрешностью не превышающей e=10-4

Строим касательные с того конца, где f(x) f”(x)>0


f”(x)=(2A+1)cos(x) – A x sin(x). f”(x)>0 на (a;b), следовательно касательные строим справа, а хорды слева. Приближение корня по методу касательных:

по методу хорд:

Вычисление ведём до того момента, пока не выполнится условие:

Результаты вычислений заносим в таблицу:

nanbnf(an)f(bn)
00.050.1-0.62850.4843
10.078240.08366-0.09080.0394
20.082020.08207-9.1515 10-43.7121 10-4
30.082060.08206-8.4666 10-83.4321 10-8

Т0 = 72,7176 секунд.

4.2 Решение уравнения комбинированным методом

Приведём f(x) = 0 к виду x = j(x). Для этого умножим обе части на произвольное число m, неравное нулю, и добавим к обеим частям х:

X = x - m f(x)


j(x) = x - m A x sin(x) + m cos(x)

В качестве m возьмём:

где М = max [f’(x)] на [a;b], а m = min [f’(x)] на [a’b]

В силу монотонности f’(x) на [a;b] имеем m = f’(а), М = f’(b). Тогда m = 0,045.


Приближение к корню ищем по следующей схеме:

Вычисление ведём до тех пор, пока не выполнится условие:

(q = max |j’(x)| на [a’b])

j’(x) на [a’b] монотонно убывает, поэтому максимум его модуля достигается на одном из концов.

j’(0,05) = 0,3322 j’(0,1) = -0,3322, следовательно, q = 0.3322 < 1. В этом случае выполняется условие сходимости и получается последовательность:

ixij( xi)D xi
00.0750.0823920.00739
10.0823920.0820250.000367
20.0820250.082063.54 10-5
30.082060.0820573.33 10-6
40.0820570.0820573.15 10-7

Итак, с погрешностью, меньшей 10-4, имеем:

Т0 = 72,7176 с. , x = 0.03142

5. Решение краевой задачи


Используем метод малого параметра. Краевую задачу запишем в виде:

(5.1)


Введя новую переменную y = (U - q0)/(q - q0), запишем (5.1) в виде:

(5.2)


e = sl(q - q0) =0.18, L/2 =0.0193. В качестве малого параметра возьмём e.

Тогда, подставив y(x) в уравнение (5.2) и перегруппировав члены при одинаковых степенях e, получим:

(5.3)


Ограничимся двумя первыми членами ряда:

Из (5.2) и (5.3) находим общее решение уравнения для y0:

где y0с тильдой – частное решение данного неоднородного уравнения; y(1)и y(2) – линейно независимые решения однородного уравнения.


Корни уравнения:

y0общ = 1 + c1ch(px)+c2sh(px), где p = 0.01953


Константы найдём из граничных условий:

откуда с1 = 0, с2 = -0,57; т.е. имеем функцию:

y0 = 1 - 0.57 sh(px)


Общее решение:

Частное решение:

Дифференцируя и подставляя в уравнение, получим:

А1 = 0; А2 = -0,1083; В1 = 0; В2 = 17,1569;

Тогда общее решение для y1имеет вид:


с3 = 0; с4 = 0,0462

Перейдя к старой переменной U, получим:


q0 = 0; q1 = -374.11; q2 = -12.9863; q3 = 2057

Итоговое уравнение:

Пользуясь этой формулой, составим таблицу значений функции U(x):

xU(x)U
0352.9075353
0.0019350.4901
0.0039343.1972343
0.0058330.9053
0.0077313.4042313
0.0097290.391
0.0116261.4598261
0.0135226.0893
0.01541836255184
0.0174133.2579
0.01937474

Используя данную таблицу, строим график функции U(x).

[см. приложение 1]

6. Заключение

Решение задачи на ЭВМ при помощи вычислительной системы ManhCad 7.0 дало результаты (функцию распределения температуры в тонком цилиндрическом стержне), полученные по решению практического задания и обработкой эксперимента (функции регрессии), которые практически (в пределах погрешности) совпадают с экспериментальными значениями.

Литература

1. Методические указания «Методы приближённых вычислений. Решение нелинейных уравнений»

(ЛТИ им. Ленсовета, Л. 1983)

2.Методические указания «Приближённые методы ислисления определённых интегралов»

(ЛТИ им. Ленсовета, Л. 1986)

3. Методические указания «Изучение распределения температуры в тонком цилиндрическом стержне»

(ЛТИ им. Ленсовета, Л. 1988)


Приложение 1

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно