Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Интеграл Пуассона

Тип Реферат
Предмет Математика
Просмотров
1114
Размер файла
60 б
Поделиться

Ознакомительный фрагмент работы:

Интеграл Пуассона

.

Пусть ¦(x) , g(x),xÎR1 –суммируемые на [-p, p] , 2p- периодические, комплекснозначные функции. Через f*g(x)будем обозначать свертку

f*g(x) =dt

Из теоремы Фубини легко следует, что свертка суммируемых функций также суммируема на [-p,p]и

cn ( f*g ) = cn ( f )× cn ( g ) , n = 0, ±1 , ±2 , ... ( 1 )

где {cn ( f )} -- коэффициенты Фурье функции f ( x ) :

cn = -i n tdt , n = 0, ±1,±2,¼

Пусть ¦ÎL1 (-p,p) . Рассмотрим при 0£r <1 функцию

¦r ( x ) = n ( f ) r|n | ei n x , x Î[-p,p] , ( 2 )

где ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного r , 0£r <1 . Коэффициенты Фурье функции ¦r(х)равны

cn ( fr ) = cn× r| n | , n = 0 , ±1,±2,¼, а это согласно (1) значит, что ¦r ( x ) можно представить в виде свертки :

¦r ( x ) = , ( 3 )

где

, t Î[-p,p]. ( 4 )

Функция двух переменных Рr (t) , 0 £r<1 , t Î[-p,p] , называется ядром Пуассона , а интеграл (3) -- интегралом Пуассона .

Следовательно,

Pr ( t ) = , 0£r <1, t Î[-p,p] . ( 5 )

Если ¦Î L1 ( -p,p ) -действительная функция , то , учитывая , что

c-n ( f ) = `cn( f ) , n = 0,±1,±2,¼,из соотношения (2) мы получим :

fr ( x ) =

=, ( 6 )

где

F ( z ) = c0 ( f ) + 2 ( z = reix ) ( 7 )

- аналитическая в единичном круге функция . Равенство (6) показывает, что для любой действительной функции ¦ÎL1( -p, p ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция

u ( z ) = ¦r (eix ) , z = reix , 0 £ r <1 , x Î [ -p, p ] .

При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой

v (z) = Im F (z) = . ( 8 )

Утверждение1.

Пусть u (z) - гармоническая ( или аналитическая ) в круге |z |<1+e(e>0)функция и ¦ (x) = u (eix) , xÎ[-p, p] . Тогда

u (z) = ( z = reix , | z |<1 ) ( 10 ).

Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:

=, | z |<1+ e .

Но тогда

и равенство (10) сразу следует из (2) и (3).

Прежде чем перейти к изучению поведения функции ¦r (x) при r®1 , отметим некоторые свойства ядра Пуассона:

а) ;

б) ;

в) для любого d>0

Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3) ¦(х)º1.

Теорема 1.

Для произвольной (комплекснозначной) функции ( -p, p ) , 1 £ p < ¥ , имеет место равенство

;

если же ¦ (x) непрерывна на [ -p, p ] и ¦ (-p) = ¦ (p) , то

.

Доказательство.

В силу (3) и свойства б) ядра Пуассона

( 12 )

Для любой функции , пользуясь неравенством Гельдера и положительностью ядра Пуассона , находим

.

Следовательно,

.

Для данного e>0 найдем d = d (e) такое, что . Тогда для r , достаточно близких к единице, мы получим оценку

.

Аналогично второе неравенство вытекает из неравенства

.

Теорема 1 доказана.

Дадим определения понятий "максимальная функция" и "оператор слабого типа", которые понадобятся нам в ходе доказательства следующей теоремы.

Определение1.

Пусть функция суммируема на любом интервале (-А, А), А > 0 . Максимальной функцией для функции называется функция

где супремум берется по всем интервалам I , содержащим точку х.

Определение 2.

Оператор называется оператором слабого типа (р,р) , если для любого y > 0

.

Теорема 2 (Фату).

Пусть - комплекснозначная функция из . Тогда

для п.в. .

Доказательство.

Покажем, что для и

, ( 13 )

где С - абсолютная константа , а M ( f, x ) - максимальная функция для f (x)[*]. Для этой цели используем легко выводимую из (5) оценку

(К - абсолютная константа).

Пусть - такое число, что

.

Тогда для

.

Неравенство (13) доказано. Используя затем слабый тип (1,1) оператора , найдем такую последовательность функций ,что

,

( 14 )

для п.в. .

Согласно (13) при xÎ (-2p,2p)

Учитывая , что по теореме 1 для каждого xÎ [-p,p] и (14)

Из последней оценки получим

при n®¥.

Теорема 2 доказана.

Замечание.

Используя вместо (13) более сильное неравенство (59), которое мы докажем позже, можно показать, что для п.в. xÎ [-p,p] , когда точка reitстремится к eixпо некасательному к окружности пути.


[*] Мы считаем , что f (x)продолжена с сохранением периодичности на отрезок [-2p,2p] (т.е.
f (x) = f (y) , если x,y Î [-2p,2p] иx-y=2p) и f (x) = 0 , если |x|>2p.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно