Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Приближенное вычисление определенного интеграла при помощи квадратурной формулы Чебышева

Тип Реферат
Предмет Математика
Просмотров
765
Размер файла
106 б
Поделиться

Ознакомительный фрагмент работы:

Приближенное вычисление определенного интеграла при помощи квадратурной формулы Чебышева

КУРСОВАЯ РАБОТА студента 2-го курса: Полякова Е.В.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

ГОСУДАРСТВЕННЫЙ ХИМИКОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Днепропетровск 2000г.

1. Общая постановка и анализ задачи.

1.1. Введение.

Требуется найти определенный интеграл

I =

по квадратурной формуле Чебышева.

Рассмотрим, что представляет из себя вообще квадратурная формула, и как можно с ее помощью вычислить приближенно интеграл.

Известно, что определенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис.1).

Рис. 1. Криволинейная трапеция.

Если f(x) непрерывна на отрезке [a, b], и известна ее первообразная F(x), то определенный интеграл от этой функции в пределах от а до b может быть вычислен по, известной всем, формуле Ньютона - Лейбница

= F(b) - F(a)

где

F’(x) = f(x)

Однако во многих случаях F(x) не может быть найдена, или первообразная получается очень сложной для вычисления.

Кроме того, функция часто задается таблично. Поэтому большое значение приобретает приближенное и в первую очередь численное интегрирование.

Задача численного интегрирования состоит в нахождении приближенного значения интеграла по заданным или вычисленным значениям подинтегральной функции f(x) в некоторых точках ( узлах ) отрезка [ a, b].

Численное определение однократного интеграла называется механической квадратурой, а соответствующие формулы численного интегрирования - квадратурными .

Заменяя подинтегральную функцию каким-либо интерполционным многочленом, мы получим квадратурные формулы вида

где

xk - выбранные узлы интерполяции;

Ak - коэффициенты, зависящие только от выбора узлов, но

не от вида функции (k=0,1,2,........, n).

R - остаточный член, или погрешность квадратурной формулы.

Отбрасывая остаточный член R, мы совершаем погрешность усечения.

При расчете к ней добавляются еще различные погрешности округления.

Разобьем отрезок интегрирования [a, b] на n равных частей системой точек

xi= xo+ i..h; ( i = 0,1,2,......,n)

xo= a; xn= b;

h= (b-a)/n ;

и вычислим подинтегральную функцию в полученных узлах

yi= f(xi) ; ( i = 0,1,2,......,n)

1.2. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа

Пусть для y=f(x) известны в n+1 точках X0,X1,X2..Xn промежутка [a,b] соответствующие значения f(xi)=yi (i=0,1,2..n). Требуется приближенно найти

По заданным значениям Yi построим полином Лагранжа. Заменим f(x) полиномом Ln(x). Тогда

где Rn(f) – ошибка квадратурной формулы. Отсюда, воспользовавшись выражением для Ln(x), получаем приближенную квадратурную формулу:

Для вычисления коэффициентов Аi заметим что:

1.коэффициенты Ai при данном расположении узлов не зависит от выбора функции f(x);

2.для полинома степени n последняя формула точная.

Пологая y=xK (k=0,1,2..,n), получим линейную систему из n+1 уравнений:

где

(k=0,1,..,n), из которой можно определить коэффициенты А0,А1,..,АN.

Определитель системы есть определитель Вандермонда

Заметим, что при применении этого метода фактическое построение полинома Лагранжа Ln(x) является излишним. Простой метод подсчета погрешности квадратурных формул разработан С.М. Никольским.

Теперь рассмотрим несколько простейших квадратурных формул :

1.3 Формула трапеций и средних прямоугольников.

Заменим дугу АВ стягивающей ее хордой, получим прямолинейную трапецию аАВb, площадь которой примем за приближенное значение интеграла

B

y

0 a b x

рис 1.3.1 Криволинейная трапеция

Рис. 1.3.2. Метод трапеций.

Рис. 1.3.3. Метод средних прямоугольников.

По методам трапеций и средних прямоугольников соответственно интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине. Соответственно получаем формулы площадей —

для метода трапеций:

,

для метода средних прямоугольников:

.

1.4. Общая формула Симпсона (параболическая формула)

Пусть n=2m есть четное число и yi=f(xi) (i=0,1,2...n) - значения функции y=f(x) для равноотстоящих точек а=x0,x1, ... ,xn=b с шагом

Применив формулу Симпсона к каждому удвоенному промежутку [x0,x2], [x2,x4] ... [x2m-2,x2m] длины 2h и введя обозначения

s1=y1+y2+ ... +y2m-1

s2=y2+y4+ ... +y2m

получим обобщенную формулу Симпсона:

Остаточный член формулы Симпсона в общем виде:

где xk I (x2к-2,x2к)

1.5. Квадратурная формула Чебышева

Рассмотрим квадратурную формулу вида:

функцию f(x) будем исать в виде когда f(x) многочлен вида f(x)=ao+a1x+...+anxn . Проинтегрировав, преобразовав и подставив значения многочлена в узлах

f(x1)=a0+a1x1+a2x12+a3x13+...+anx1n

f(x2)=a0+a1x2+a2x22+a3x23+...+anx2n

f(x3)=a0+a1x3+a2x32+a3x33+...+anx3n

. . . . . . . . . . . . . . . .

f(xn)=a0+a1xn+a2xn2+a3xn3+...+anxnn

получим формулу Чебышева.

Значения х1,х2,..,хn для различных n приведены в таблице 3.

Таблица 3 – Значения х1,х2,..,хn для различных n.

nItiniti
21;2± 0,57735061;6± 0,866247
31;3± 0,7071072;5± 0,422519
203;4± 0,266635
41;4± 0,79465471;7± 0,883862
2;3± 0,1875922;6± 0,529657
51;5± 0,8324983;5± 0,321912
2;4± 0,37454140
30

2. Решение контрольного примера

где a=0 ; b= ; при n=5;

f(x) = sin(x);

ixiyi
10,1314890,131118
20,4909850,471494
30,7850,706825
40,5090150,487317
50,8685110,763367

x1= p/4+p/4*t1=p/4+p/4(-0,832498)=0,131489

x2= p/4+p/4*t2=p/4+p/4(-0,374341)=0,490985

x3= p/4+p/4*t3=p/4+p/4*0=0,785

x4=1- x2=1-0,490985 = 0,509015

x5=1- x1=1-0,131489=0,868511

y1=sin(x1) = sin(0,131489)=0,131118

y2=sin(x2) = sin(0,490985)=0,471494

y3=sin(x3) = sin(0,785)=0,706825

y4=sin(x4) = sin(0,509015)=0,487317

y5=sin(x5) = sin(0,868511)=0,763367

I = p/10(0,131118+0,471494+0,706825+0,487317+0,763367) =

=p/10*2,560121=0,8038779.

3. Описание программы Integral. pas. Алгоритм.

Процедура VVOD - заполняет массив, содержащий в себе аргументы xi

Процедура FORM - используя массив, содержащий аргументы xi заполняет массив yi

Процедура CHEB - используя массивы xi и yi, высчитывает по квадратурной формуле Чебышева приближенное значение интеграла.

Процедура TABL - это подпрограмма, осуществляющая вывод таблицы узлов (аргумент - функция)

При запуске программы нужно ввести границы интегрирования.

После ввода границ интегрирования используется процедура VVOD, а затем высчитывается и выводиться на экран шаг табулирования функции h.

После этого используем процедуры FORM и CHEB .

Получив результат, выводим таблицу ( процедура TABL ) и интеграл.

4. Заключение и выводы.

Таким образом очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное.

Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же очень важно то, какой будет взят шаг интегрирования.

Хотя численные методы и не дают очень точного значения интеграла, но они очень важны, так как не всегда можно решить задачу интегрирования аналитическим способом.

Листинг программы.

Программа написана на языке Tubro Pascal 7.0 для MS-DOS. Ниже приведен ее листинг:

program integral;

uses crt;

const n=5;

k=-0.832498;

l=-0.374541;

z=0.0;

type aa=array[1..n] of real;

var x,y:aa;

a,b,h,ich:real;

{ заполнение х-сов в массив х[5] }

procedure vvod(var a,b:real;var c:aa);

var i:integer;

t:aa;

Begin

t[1]:=k;

t[2]:=l;

t[3]:=z;

t[4]:=l;

t[5]:=k;

for i:=1 to n-1 do

c[i]:=((b+a)/2+(b-a)/2*t[i]);

for i:=n-1 to n do

c[i]:=1 - c[n+1-i];

end;

{ заполнение y-ков в массиве у[5] }

procedure form(var x:aa; var y:aa);

var i:integer;

Begin

for i:=1 to n do

y[i]:=sin(x[i]); {функция}

end;

{ процедура для расчета интеграла по квадратурной

формуле Чебышева }

procedure cheb(var y:aa;var ich:real);

var i:integer;

Begin

ich:=0;

for i:=1 to n do

ich:=ich+y[i]*h;

end;

{ процедура вывода таблицы}

procedure tabl;

var i:integer;

Begin

writeln(' ___________________________________ ');

writeln('| i | t| x|y |');

writeln(' ___________________________________ ');

writeln('| 1 |',k:9:6,'|',x[1]:9:6,' |',y[1]:9:6,'|');

writeln('| 2 |',l:9:6,'|',x[2]:9:6,' |',y[2]:9:6,'|');

writeln('| 3 |',z:9:6,'|',x[3]:9:6,' |',y[3]:9:6,'|');

writeln('| 4 |',l:9:6,'|',x[4]:9:6,' |',y[4]:9:6,'|');

writeln('| 5 |',k:9:6,'|',x[5]:9:6,' |',y[5]:9:6,'|');

writeln(' ___________________________________ ');

end;

Begin

clrscr;

writeln(' П Р О Г Р А М М А Д Л Я В Ы Ч И С Л Е Н И Я');

writeln(' О П Р Е Д Е Л Е Н Н О Г ОИ Н Т Е Г Р А Л А ');

writeln;

writeln('Введите границы интегрирования a,b:');

readln(a,b);

vvod(a,b,x);

h:=(b-a)/n;

writeln('h=',h:9:6);

form(x,y);

cheb(y,ich);

tabl;

writeln('I=',ich:8:6);

end.

Вывод результата :

П Р О Г Р А М М А Д Л Я В Ы Ч И С Л Е Н И Я

О П Р Е Д Е Л Е Н Н О Г ОИ Н Т Е Г Р А Л А

Введите границы интегрирования a,b:

0 1.5708

h= 0.314160

____________________________

| i | t | x | y |

____________________________

| 1 |-0.832498| 0.131556 | 0.131177|

| 2 |-0.374541| 0.491235 | 0.471716|

| 3 | 0.000000| 0.785400 | 0.707108|

| 4 |-0.374541| 0.508765 | 0.487099|

| 5 |-0.832498| 0.868444 | 0.763325|

____________________________

I=0.804383

Список литературы:

1. Ракитин Т.А., Первушин В.А. “Практическое руководство по численным методам с приложением программ на языке Basic“

2. Крылов В.И. “Приближенные вычисления интегралов“ - М. : Физмат.

3. Демидович и Марон “Основы вычислительной математики“

4. Копченова и Марон “Вычислительная математика в примерах и задачах”

5. Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.

6. Зуев Е.А. Язык программирования Turbo Pascal. М.1992 г.

7. Скляров В.А. Знакомьтесь: Паскаль. М. 1988 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную по Английскому. С-07505

Контрольная, Английский язык

Срок сдачи к 17 янв.

только что

Тема: Воспитание дружеских взаимодействий дошкольников

Курсовая, Педагогика

Срок сдачи к 16 янв.

1 минуту назад

Выполнение 6 работ в программе Statistica

Контрольная, Программные статистические комплексы

Срок сдачи к 20 февр.

1 минуту назад

Решить 3 задачи.

Решение задач, Физика

Срок сдачи к 22 янв.

1 минуту назад
1 минуту назад

Контрольная под дисциплине Механика жидкости и газа

Контрольная, Механика жидкости и газа

Срок сдачи к 20 янв.

1 минуту назад

Производственная практика

Отчет по практике, Психология и педагогика

Срок сдачи к 18 янв.

2 минуты назад
2 минуты назад

Выполнить контрольную по Английскому. С-07504

Контрольная, Английский язык

Срок сдачи к 17 янв.

2 минуты назад

Решить задачи

Решение задач, Международное право

Срок сдачи к 16 янв.

2 минуты назад

Написать отзыв по статье на 1,5-2 листа

Другое, Дефектология

Срок сдачи к 18 янв.

3 минуты назад

Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"

Контрольная, Теплотехника и хладотехника

Срок сдачи к 19 янв.

4 минуты назад

3 задачи

Решение задач, Теоретическая механика

Срок сдачи к 18 янв.

4 минуты назад

Теплофизика

Решение задач, Теплофизика

Срок сдачи к 15 янв.

5 минут назад

Лабораторная работа № 1.1 Модуль: Основы логического мышления

Решение задач, Введение в специальность, логика

Срок сдачи к 15 янв.

5 минут назад

Том каулитц

Контрольная, Математика

Срок сдачи к 18 янв.

6 минут назад

сделать лабораторные работы

Лабораторная, Цифровая культура в профессиональной деятельности, культурология

Срок сдачи к 25 янв.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно