Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение дифференциального уравнения первого порядка

Тип Реферат
Предмет Математика
Просмотров
1025
Размер файла
225 б
Поделиться

Ознакомительный фрагмент работы:

Решение дифференциального уравнения первого порядка

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ИНФОРМАТИКИ

К У Р С О В А Я Р А Б О Т А

ПО ЧИСЛЕННЫМ МЕТОДАМ

на тему:

РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

ПЕРВОГО ПОРЯДКА

Сумы, 2005 г.

1. Метод Адамса

Этот метод численного интегрирования разработан Адамсом в 1855г. В последствии этот метод был забыт и вновь открыт в начале века. Популяризация метода Адамса и дальнейшее его усовершенствование связаны с именем А.Н. Крылова.

Изложим метод Адамса применительно к уравнению первого порядка

(1)

с начальным условием

(2).

Пусть x(i=0,1,2,….) – система равностоящих значений с шагом h и =. Очевидно, имеем

(3).

В силу второй интерполяционной формулы Ньютона с точностью до разностей четвертого порядка получаем

(4)

где .

Подставляя выражение (4) в формулу (3) и учитывая, что dx=hdq, будем иметь

Отсюда получаем экстраполяционную формулу Адамса

. (5)

Для начала процесса нужны четыре начальных значения , так называемый начальный отрезок, который определяют исходя из начального условия (2), каким-нибудь численным методом. Можно, например, использовать метод Рунге-Кутта. Зная эти значения, из уравнения (1) можно найти значения производных и составить таблицу разностей.

(6)

Дальнейшие значения (i=4,5,…) искомого решения можно шаг за шагом вычислять по формуле Адамса, пополняя по мере необходимости таблицу разностей (6).

Для контроля рекомендуется вычислив первое приближение для по формуле

определить , подсчитать конечные разности.

, , (7)

и затем найти второе приближение по более точной формуле

(8)

Если и отличаются лишь на несколько единиц последнего сохраняемого десятичного разряда, то можно положить , а затем, найдя , перевычислив конечные разности (7). После этого, строго говоря, следует снова найти по формуле(8). Поэтому шаг h должен быть таким , чтобы этот пересчёт был излишним.

На практике шаг h выбирают столь малым, чтобы можно было пренебречь членом в формуле (8).

Если же расхождение величин и значительно, то следует уменьшить шаг h.

Обычно шаг h уменьшают в два раза. Покажем, как в этом случае, имея до некоторого значения i таблицу величин и, (ji) c шагом , можно просто построить таблицу величин (k=0,1,2…) с шагом . Для кратности введения сокращенные обозначения:

(k=0,1,2…).

На основе формулы (4) будем иметь

, (9)

где . Отсюда, полагая j=i-2 и q=1/2 и учитывая, что , находим

. (10)

Аналогично при j=i-1, q=1/2 из формулы (9) получаем, что аргументу соответствует значение

. (11)

Что касается значений и , то они имеются в старой таблице. После этого составляем начальный отрезок для новой таблицы. и находим конечные разности:

(k=-3,-2,-1),

(k=-3,-2),

(k=-3,).

Дальше таблица продолжается обычным путём, посредством соответствующей модификации формулы (5):

,

(j=0,1,2,…).

Для работы на электронных счётчиках машинах формулу Адамса (5) выгодно применять в раскрытом виде. Учитывая, что

после приведения подобных членов имеем

,

причём .

2. Методы, основанные на применении производных высших порядков

До сих пор для численного интегрирования дифференциального уравнения первого порядка

(1)

с начальным условием

(2)

мы применяли формулы, в которых явно используется лишь первая производная искомого решения.

Однако если использовать формулы, явно содержащие производные высших порядков от искомого решения, то можно указать методы, дающие более точный результат на данном промежутке без увеличения числа шагов.

Выведем соответствующие формулы, предполагая, что правая часть уравнения (1) дифференцируема достаточное число раз.

Пусть - значения искомого решения y=y(x) и, соответственно, значения его производных первого и второго порядков в точках . Располагая величины

в ряды по степеням h, находим:

Из полученных формул исключим члены, содержащие и .

Для этого вторую формулу умножим на , а третью – на и сложим с первой. Будем иметь:

Таким образом, с точностью до имеем приближённую формулу

(3)

Можно показать, что остаточный член формулы (3) равен где Аналогично имеем:


и

Отсюда

С другой стороны

Поэтому

Таким образом, с точностью до h5 имеем приближённую формулу

(4)


Можно доказать, что остаточный член формулы (4) есть

где

К формулам (3) и (4) присоединим выражения для производных:

(5)

(6)

Процесс численного дифференцирования уравнения (1) при наличии начального условия (2), использющий формулы (3) и (4), происходит следующим образом. Каким-либо методом вычисляем три начальные строки (начальная таблица):

Из формулы (4) при i=2 получаем первое приближение для :

(7)

и, пользуясь формулами (5) и (6), находим для соответствующих производных и их первые приближения:

и .

Второе приближение для определяем при i=2 из формулы (3):

(8)

После этого исправляем значения производных и , подсчитывая их вторые приближения:

и .

Для контроля ещё раз вычисляем по формуле (3) третье приближение значения , используя найденные значения и .

Если шаг h выбран подходящим, то перещёт не даёт нового результата, и в этом случае можно положить

В противном случае следует уменьшить шаг. Аналогично находятся дальнейшие значения при i>3.

Для получения начальных значений и обычно используют метод последовательных приближений или метод Рунге-Кутта, после чего нужные производные и (i=0,1,2) определяются по формулам (5) и (6).

Можна также применить следующий приём: сначала, используя данное начальное значение , непосредственно вычисляем

и .

Тем самым будет заполнена первая строка начальной таблицы .

Далее на основании формулы Тейлера приближённо получаем

и, следовательно, можно будит найти

и .

Пользуясь этими данными, уточняем значение по формуле (3):

и затем перевычисляем значения и . Тем самым заполняем вторую строку начальной таблицы. Аналогично, исходя из второй строки, находим элементы , и последней, третей строки начальной таблицы.

Отметим, что если пересчёты элементов строк дают значительные расхождения, то этот приём не является надёжным. В таком случае следует или уменьшить шаг h вычислений, или же обратиться к более точным методам.

В заключение приведём формулы, обеспечивающие более высокую степень точности, но требующие вычисления, кроме второй, ещё и третьей производной искомого решения. А именно, используя Формулу Тейлера и употребляя приём, аналогичный указанному выше, получаем формулы

, (11)

где

, и

, (12)

где .


Формула (11) употребляется для нахождения первого приближения ; формула (12) даёт уточнённое значение . Само собой разумеется, что к последним двум формулам целесообразно прибегать тогда, когда форма дифференциального уравнения позволяет сравнительно просто находить вторую и третью производные от искомой функции y.


Приложение

program proizw_w_p;

uses crt;

const epsilon=0.05;

type mas=array[1..100] of real;

nabl=array [1..3] of real;

var i:integer;

x,y,y1,y2:mas;

nabl1,nabl2,nabl3:nabl;

a,h:real;

n:integer;

function f(x, y:real):real;

begin

f:=sqr(x)-sqr(y);

end;

procedure metod(xi, yi, step: real; var rez:real);

var k1, k2, k3, k4:real;

begin

k1:=F(xi,yi);

k2:=F(xi+step/2,yi+k1*step/2);

k3:=F(xi+step/2,yi+k2*step/2);

k4:=F(xi+step,yi+k3*step);

rez:=yi+(step/6)*(k1+2*k2+2*k3+k4)

end;

procedure osn_metod(xi, yi, step:real;var yh22:real;var h:real);

var yh,yh2:real;

begin

repeat

metod(xi, yi,step, yh);

metod(xi, yi, step/2, yh2);

metod(xi, yh2, step/2, yh22);

if abs(yh-yh22)/15>epsilon then step:=h/2;

until abs(yh-yh22)/15<epsilon;

end;

procedure iteraziya(j:integer;xi,h:real);

begin

{первое приближение}

nabl1[1]:=y[j-3]+3*(y[j-1]-y[j-2])+sqr(h)*y2[j-1]-y2[j-2];

{производная первого приближения}

nabl1[2]:=sqr(xi)-sqr(nabl1[1]);

{вторая производная первого приближение}

nabl1[3]:=2*(xi-nabl1[1]*nabl1[2]);

{второе приближение}

nabl2[1]:=y[j-1]+(h/2)*(y1[j-1]+nabl1[2])+((sqr(h))/12)*(nabl1[3]-y2[j-1]);

{производная второго приближения}

nabl2[2]:=sqr(xi)-sqr(nabl2[1]);

{вторая производная второго приближения}

nabl2[3]:=2*(xi-nabl2[1]*nabl2[2]);

{третье приближение}

nabl3[1]:=y[j-1]+(h/2)*(y1[j-1]+nabl2[2])-(sqr(h)/12)*(nabl2[3]-y2[j-1]);

{производная третьего приближения}

nabl3[2]:=sqr(xi)-sqr(nabl3[1]);

{вторая производная третьего приближения}

nabl3[3]:=2*(xi-nabl2[1]*nabl2[2]);

end;

procedure solution(h:real);

begin

{==============Метод Рунге-Кута =================================}

a:=0;

i:=1;

y[1]:=1;

while i<4 do

begin

x[i+1]:=a+i*h;

osn_metod(x[i], y[i], h,y[i+1], h);

inc(i);

end;

{======Окончание метода Рунге-Кута =================================}

{============найдем первые и вторые производные===============}

for i:=1 to 3 do

begin

y1[i]:=sqr(x[i])-sqr(y[i]);

y2[i]:=2*(x[i]-y[i]*y1[i]);

end;

{=================================================================}

for i:=4 to n do

begin

iteraziya(i,x[i],h);

if abs(nabl3[1]-nabl2[1])<epsilon

then

begin

y[i]:=nabl3[1];

y1[i]:=nabl3[2];

y2[i]:=nabl3[3];

end

else

begin

h:=h/2;

if keypressed then halt;

solution(h);

end;

end;

end;

BEGIN

{=====================init==========================================}

clrscr;

write('введите количество значений, которые необходимо вычислить n= ');

readln(n);

h:=0.1;

{==================end of init=========================================}

for i:=1 to n do

begin

x[i]:=(i-1)*h;

end;

solution(h);

for i:=1 to n do

begin

write('y[',i,']= ',y[i],' y"[',i,']= ',y1[i],' y""[',i,']= ',y2[i]);

writeln;

end;

writeln('');

writeln('');

write('Press <enter> to exit....');

readln;

END.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно