Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Контрольная работа по Математике 2

Тип Реферат
Предмет Математика
Просмотров
1470
Размер файла
209 б
Поделиться

Ознакомительный фрагмент работы:

Контрольная работа по Математике 2

1.01. В группе из 25 человек 10 учится на «отлично», 8 на «хорошо» и 7 на «удовлетворительно». Найти вероятность того, что из взятых наугад 8 человек 3 человека учатся на «отлично».

Решение. В данном случае испытание состоит в том, что из 25 человек наугад берутся 8 человек. При этом число всех равновозможных, несовместных и единственно возможных исходов равно

.

Здесь мы используем сочетания, т.к. подмножества из 8 элементов неупорядочены.

Количество способов, которыми из 10 отличников можно взять 3, есть

Остальных человек (не отличников) в группе из 8 человек у нас будет 8-3=5. Их мы выбираем из оставшихся 25-8=17 человек следующим числом способов:

Далее, вероятность того, что в группе из 8 человек будут 3 отличника, вычисляем по классической формуле

2.01. Программа экзамена состоит из 30 вопросов. Из 20 студентов группы 8 человек выучили все вопросы, 6 человек по 25 вопросов, 5 человек по 20 вопросов, а один человек 10 вопросов. Определить вероятность того, что случайно вызванный студент ответит на два вопроса билета.

Решение. Число способов составления билетов по два вопроса из 30 есть

Для каждого из 8 человек, знающих все вопросы, число билетов будет тем же самым, т.е., вероятность найти билет с известными вопросами есть 1 или 100%. Доля таких студентов в группе есть .

Для следующих 6 человек возможное число билетов с известными вопросами есть . Вероятность для них найти билет с известными вопросами есть . Доля таких студентов в группе есть .

Аналогично, для следующих 5 человек , , их доля есть .

Для того, кто знает только 10 вопросов, число выигрышных билетов есть , , его доля есть .

Теперь воспользуемся формулой полной вероятности

=70,9%

3.01. Всхожесть семян некоторого растения составляет 80%. Найти вероятность того, что из 6 посеянных семян взойдёт: три, не менее трёх, не более четырёх.

Решение. Так как возможность одновременного всхода и гибели семени нереальна, это несовместные события, то вероятность гибели семени есть q=1-p=0,2.

Вероятность появления ровно 3 раза в серии из 6 событий находим по формуле Бернулли, так как число испытаний n = 6 невелико (n £ 10):

Не менее трёх ― это означает либо 3, либо 4, либо 5, либо 6. Вычислим вероятность проращивания всех 6 семян: Р6(6)=0,86=0,262.

Соответственно,

Следовательно, вероятность того, что взойдёт не менее 3 семян, есть

Рn≥3(6)= P3(6)+P4(6)+P5(6)+P6(6)=0,082+0,262+0,246+0,393=0,983

Не более четырёх ― это значит, любое число, кроме 5 и 6, т.е., вероятность такого события есть

Рn≤4(6)=1-(P6(6)+P5(6))=1-0,393-0,262=0,345

Ответ: , Рn≥3(6)=0,983, Рn≤4(6)=0,345.

4.01. Вероятность производства бракованной детали равна 0,008. Найти вероятность того, что из взятых на проверку 1000 деталей будет 10 бракованных.

Решение. В этой задаче число испытаний N = 1000 достаточно велико (N > 10), поэтому используем приближенные формулы Лапласа.

Число бракованных деталей равно 10, то есть . Соответствующую вероятность находим по локальной формуле Лапласа.

, где

.

Результат вычислений для x0 округляем с точностью до 0,01, так как значения функции φ(х0) табулируются в с такой точностью. По специальной таблице, находим: φ(0,71)=0,3101.

Следовательно,

5.01. Из 25 контрольных работ, среди которых 5 оценены на «отлично», наугад извлекаются 3 работы. Найти закон распределения дискретной случайной величины Х ― числа работ, оцененных на отлично. Найти числовые характеристики случайной величины Х. Построить функцию распределения.

Решение. Имеем случайную величину Х ― число отличных работ. Её возможные значения .

Пусть у нас не попалось ни одной из отличных работ, т.е., вытянули все 3 не отличные. Вероятность этого есть

Пусть теперь есть только одна отличная работа. Она может быть вытащена в первый, во второй или только в третий раз. Вероятность такого события есть

. Здесь 20 и 5 ― соответственно число не отличных и отличных работ в исходном массиве, 25, 24 и 23 ― число работ, последовательно уменьшающихся по мере того как мы выбираем их по одной.

Далее, пусть есть 2 отличных работы и соответственно 1 не отличная. Эта одна не отличная работа может попасться в первый, второй или третий раз:

И наконец, единственный исход со всеми отличными работами:

Полученные значения заносим в таблицу, которая и будет представлять закон распределения данной случайной величины:

xi

0

1

2

3

pi

0,4956

0,4130

0,0870

0,0043

Сумма всех вероятностей

Для нахождения интегральной функции распределения воспользуемся её определением применительно к каждому промежутку изменения случайной величины

x≤0

F(x)=P(x<0)=0

0≤x≤1

F(x)=P(x<1)=p0=0,4956

1≤x≤2

F(x)=P(x<2)=p0+p1=0,4956+0,4130=0,9086

2≤x≤3

F(x)=P(x<3)=p0+p1+p2=0,9956

3≤x≤∞

F(x)=1

Итак, искомая функция распределения выглядит следующим образом:

Чертим график

Найдём числовые характеристики случайной величины:

Мода М0=1

Математическое ожидание

Дисперсия

Среднеквадратичное отклонение

6.01. Случайная величина Х задана плотностью вероятностей

Определить параметр А, функцию распределения F(x), моду, математическое ожидание, дисперсию, среднеквадратичное отклонение, вероятность того, что в четырёх независимых испытаниях случайная величина Х попадёт 3 раза в интервал (0, 2). Построить графики функций f(x), F(x).

Решение. Так как ненулевая наша функция распределения только на интервале от 1 до ∞, то воспользуемся свойством нормировки плотности вероятности:

, откуда А=4

Таким образом,

Чертим график такой функции

Найдём моду такой функции. Мо=1, так как наибольшее значение плотность вероятности принимает именно при x=1

Найдём медиану:

. Отсюда

Найдём математическое ожидание

Дисперсия

Среднеквадратичное отклонение

Найдём интегральную функцию распределения:

При x≤1, F(x)=0

При x>1

Таким образом,

Вычерчиваем такой график

Вероятность того, что случайная величина попадает в интервал (0, 2) или фактически в интервал (1, 2), т.к. невозможны значения меньше 1, вычислим, проинтегрировав плотность вероятности в соответствующих пределах:

, так как на промежутке от 0 до 1 вероятность выпадения величины равна нулю.

Вероятность того, что только три из четырёх попаданий будет в этот интервал, вычислим по формуле Бернулли

7.01. Срок службы прибора представляет собой случайную величину, подчинённую закону нормального распределения со средним сроком службы в 10 лет и среднеквадратичным отклонением 1,5 года. Определить вероятность того, что прибор прослужит до 15 лет, от 8 до 18 лет, свыше 16 лет.

Решение. Вероятность того, что величина Х попадает в некоторый интервал (α, β) есть , где Ф ― функция Лапласа, m ― математическое ожидание распределения, σ ― среднеквадратичное отклонение.

В первом случае имеется от 0 до 15 лет, т.е., α=0, β=15

Следовательно, . Аргумент соответствующей функции Лапласа округляем до сотых. Обращаясь к таблице, выписываем: Ф(3,33)=0,4996 и Ф(6,67)=0,5000

Следовательно, вероятность того, что прибор прослужит до 15 лет есть Р1=0,4996+0,5=0,996

Соответственно, вероятность того, что он прослужит от 8 до 18 лет есть

. Обращаясь к таблице, выписываем: Ф(1,33)=0,4082 и Ф(5,33)=0,5000. Следовательно, вероятность того, что он прослужит от 8 до 18 лет есть Р2=0,5+0,4082=0,9082

Свыше 16 лет ― это означает от 16 до бесконечности. . Обращаясь к таблице, выписываем: Ф(∞)=0,5 и Ф(4)=0,499968. Следовательно, такая вероятность Р3=0,5-0,499968=3,2·10‑5.

8.01. Имеются данные о продаже туристических товаров в системе спорткультторга по кварталам за 5 лет в тыс. у.е. рассчитать гарантийный запас товара в тыс. у.е. на квартал с указанной надёжностью γ и проанализировать плановые товарные запасы на квартал

Решение. Поскольку σ неизвестно, то гарантийный запас обуви найдём по формуле , где . По таблице Стьюдента с уровнем значимости α=1-0,96=0,04 и числом степеней свободы k=n-1=19 найдем tγ=2,20.

Составляем расчётную таблицу для нахождения и S.

xi

xi

1

396

156816

12

418

174724

2

438

191844

13

412

169744

3

398

158404

14

480

230400

4

412

169744

15

478

228484

5

414

171396

16

519

269361

6

422

178084

17

429

184041

7

436

190096

18

437

190969

8

418

174724

19

391

152881

9

443

196249

20

368

135424

10

474

224676

Σ

8633

3750561

11

450

202500

Параметры вычисляем по формулам:

Тогда

Границы доверительного интервала ― это 431,65-17,5=414,12 слева и 431,65+17,5=449,18

Таким образом, гарантийный квартальный запас должен быть не менее 414,12 тыс. у.е. и не более 449,18 тыс. у.е. В эти рамки должно укладываться не менее 96% произведённых выборок.

План 460 тыс. у.е. не соответствует этому интервалу.

Определить тесноту связи между X и Y, составить уравнение регрессии.

Решение. Для определения характера зависимости построим точки xi, yi.

Видно, что все точки, кроме (14, 1346), (14,3, 1359) группируются около некоторой прямой. Следовательно, можно говорить о линейной регрессии.

Будем искать уравнение регрессии в виде

xi

yi

xiyi

1

13.5

1362.0

182.25

1855044

18387

1364.04

2.04

2

13.6

1368.0

184.96

1871424

18604

1362.34

5.66

3

13.7

1357.0

187.69

1841449

18590

1360.64

3.64

4

13.8

1363.0

190.44

1857769

18809

1358.95

4.05

5

13.9

1360.0

193.21

1849600

18904

1357.25

2.75

6

14.0

1346.0

196.00

1811716

18844

1355.55

9.55

7

14.1

1354.0

198.81

1833316

19091

1353.85

0.15

8

14.2

1347.0

201.64

1814409

19127

1352.16

5.16

9

14.3

1359.0

204.49

1846881

19433

1350.46

8.54

10

14.4

1348.0

207.36

1817104

19411

1348.76

0.76

Σ

139,5

330

1946,85

18398712

189203

-

-

Искомые параметры a и b найдём из системы уравнений

а=-16,96969 и b=1593,12727. Следовательно, искомая аппроксимирующая функция есть y=-16,96969х+1593,12727

Рассчитаем по этому уравнению ожидаемые значения выпечки хлеба. По значениям отклонений можно сделать вывод о том, что ожидаемые значения удовлетворительно согласуются с наблюдаемыми значениями у.

Найдём выборочный коэффициент корреляции

Коэффициент корреляции по модулю равен 0,69 ― связь заметная, обратная (по шкале Чаддока).


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно