Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Розв’язання лінійних задач методами лінійного програмування

Тип Реферат
Предмет Математика
Просмотров
1578
Размер файла
148 б
Поделиться

Ознакомительный фрагмент работы:

Розв’язання лінійних задач методами лінійного програмування

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Чернігівський державний технологічний університет

Кафедра вищої математики

Контрольна робота

з дисципліни: Математичне програмування

Варіант 06

Чернігів 2009


Зміст

Завдання №1

Завдання №2

Завдання №3

Завдання №4

Завдання №5

Список використаних джерел


Завдання №1

Звести до канонічної форми задачу лінійного програмування:

Дана задача лінійного програмування задана в симетричній формі запису: умови, при яких функція F буде максимальною, задані у вигляді нерівностей. Для того, щоб отримати канонічну форму задачі лінійного програмування необхідно нерівності перетворити у рівності, використовуючи теорему, за якою нерівність

еквівалентна рівнянню

і нерівності

а нерівність вигляду

еквівалентна рівнянню

, в якому


Враховуючи наведене вище дану задачу запишемо у наступній канонічній формі:

Завдання №2

Визначити оптимальний план задачі лінійного програмування графічним методом (знайти максимум і мінімум функції):

Для задач з двома змінними можна використовувати графічний спосіб розв’язку задач лінійного програмування. Побудуємо область допустимих розв’язків системи лінійних нерівностей. Для цього будуємо відповідні даним нерівностям граничні прямі:

Потім знаходимо напівплощини, в яких виконуються задані нерівності (рисунок1).


Рисунок1– Графічне визначення максимального і мінімального значення функції

Область допустимих рішень визначається як загальна частина напівплощин, відповідних даним нерівностям, які при цьому знаходяться в першій четвертині, тобто обмежуються прямими і . З малюнку 1 видно, що функція не має рішення, оскільки напівплощина, утворена прямими

не співпадає з площиною, утвореною обмеженнями

.

Завдання №3

Побудувати двоїсту задачу. Симплексним методом знайти оптимальний план початкової задачі. Використовуючи першу теорему двоїстості, визначити план другої задачі.


Для перетворення нерівностей в рівності вводимо змінні одиничні матриці х3, х4 і х5. Для розв’язку задачі симплексним методом необхідно мати три одиничних матриці при невід’ємних правих частинах рівнянь. Для отримання одиничної матриці в першій і третій нерівностях вводимо введемо штучні змінну х6 і х7 та отримаємо одиничні матриці А6 і А7. Де

і

В результаті наведених перетворень отримаємо наступну задачу:

У виразі функції величину М вважаємо достатньо великим додатнім числом, оскільки задача розв’язується на знаходження мінімального значення функції.

Запишемо задачу у векторній формі:


де

В якості базису вибираємо одиничні вектори А6, А4, А7. Вільні невідомі прирівнюємо нулю . В результаті отримаємо початковий опорний план розширеної задачі

,

якому відповідає розкладення

Для перевірки початкового опорного плану складаємо першу симплексну таблицю (таблиця1) і підраховуємо значення функції і оцінок Маємо:

тобто оскільки М попередньо не фіксовано, то оцінки є лінійними функціями величини М, причому функція складається з двох доданків, одне з яких залежить від М, інше не залежить. Для зручності розрахунків в (F-C) рядок запишемо доданок, незалежний від М, а в (М) рядок – тільки коефіцієнти при М, які і дозволяють порівняти оцінки між собою. Для векторів базису оцінки дорівнюють нулю.

Таблиця1– Перша симплексна таблиця

БазисС базисуА0
х1х2х3х4х5х6х7
х6М81-10010
х40203401000
х7М63100-101
F-C0-5-200000
М1444-10-100

В (М) рядку є додатні оцінки, тому опорний план Х0 не є оптимальним і його можна покращити, включивши в базис вектор, якому відповідає . Оскільки у нас максимальне значення 4 належить двом векторам, то в базис включаємо вектор, якому відповідає мінімальне Сj. Розв’язувальним рядком вибирається той, в якому найменше відношення Серед коефіцієнтів розкладання векторів А1 і А2 по базису є додатні, тому хоча б один з векторів існує.. Знайдемо ці значення:

;

Таким чином підтвердилося, що розв’язувальним стовпчиком буде другий, і визначилося, що розв’язувальним рядком буде перший. Тобто розв’язувальний елемент – число 3. Тоді вектор А2 включаємо в базис, а вектор А6 виключаємо з нього.

Складаємо другу симплексну таблицю (таблиця2). При цьому елементи першого (розв’язувального) рядка ділимо на 3. Елементи інших рядків визначаємо використовуючи формули повного виключення Йордана-Гауса.

Таблиця2– Друга симплексна таблиця

БазисС базисуА0
х1х2х3х4х5х6х7
х222,670,331-0,33000,330
х409,331,6701,3310-1,330
х7М3,3300,330-1-0,331
F-C5,33-4,330-0,67000,670
М3,332,6700,330-1-1,330

В (М) рядку є додатні оцінки, тому план, зображений в таблиці2 не є оптимальним і його можна покращити, включивши в базис вектор, якому відповідає . Тобто за розв’язувальний стовпчик вибираємо перший. Мінімальне відношення

тому розв’язувальним рядком є третій. Таким чином розв’язувальний елемент – число 2,67. Тоді вектор А1 включаємо в базис, а вектор А7 виключаємо з нього.

Складаємо другу симплексну таблицю (таблиця3). При цьому елементи третього (розв’язувального) рядка ділимо на 2,67. Елементи інших рядків визначаємо використовуючи формули повного виключення Йордана-Гауса.


Таблиця3– Третя симплексна таблиця

БазисС базисуА0
х1х2х3х4х5х6х7
х222,2501-0,37500,1250,375-0,125
х407,25001,12510,625-1,125-0,625
х151,25100,1250-0,375-0,1250,375
F-C10,7500-0,1250-1,6250,1251,625
М000000-1-1

В результаті проведеної ітерації з базису виключено штучні елементи, тому в рядку (М)всі оцінки, крім оцінки штучного вектору, перетворилися на нуль. Оскільки в рядках (F-C) і (М) не має додатних значень, то знайдене рішення

()

є оптимальним. Функція при цьому

Перевірка

Кожній задачі лінійного програмування можна поставити у відповідність двоїсту задачу. Для цього першим кроком необхідно впорядкувати запис вихідної задачі. Оскільки у нас функція мінімізується, то всі умови-нерівності повинні бути вигляду . Виконання цієї умови досягаємо множенням відповідних умов на (1-). В результаті система обмежень матиме наступний вигляд:

Оскільки вихідна задача є задачею мінімізації, то двоїста буде задачею максимізації. Двоїста задача буде мати три змінні , оскільки вихідна задача має три обмеження. При цьому вектор, отриманий із коефіцієнтів при невідомих цільової функції вихідної задачі , співпадає з вектором констант у правих частинах обмежень двоїстої задачі. Аналогічно пов’язані між собою вектори, утворені з коефіцієнтів при невідомих цільової функції двоїстої задачі , і константи в правих частинах обмежень вихідної задачі. Кожній змінній двоїстої задачі відповідає і-те обмеження вихідної задачі, і, навпаки, кожній змінній прямої задачі відповідає j-те обмеження двоїстої задачі. Матриця з коефіцієнтів при невідомих двоїстої задачі утворюється транспортуванням матриці А, складеної з коефіцієнтів при невідомих вихідної задачі. Якщо на j-ту змінну вихідної задачі накладена умова невід’ємності, то j-те обмеження двоїстої задачі буде нерівністю, в іншому випадку j-те обмеження буде рівністю; аналогічно пов’язані між собою обмеження вихідної задачі і змінні двоїстої.

Складаємо матрицю при невідомих вихідної задачі:

,


тоді матриця при невідомих двоїстої задачі матиме наступний вигляд:

На накладено умову невід’ємності, тому обмеження двоїстої задачі матимуть вигляд нерівності, а не рівності. Оскільки в початковій задачі всі обмеження мають вигляд нерівності, то накладаємо умови

Враховуючи все наведене, двоїста задача матиме наступний вигляд:

Якщо розглянути першу симплексну таблицю з одиничним додатковим базисом, то можна помітити, що в стовбцях записана вихідна задача, а в рядках – двоїста. Причому оцінками плану вихідної задачі є , а оцінками плану двоїстої задачі – З таблиці3, отриманої в результаті рішення вихідної задачі знаходимо:

Завдання №4

Визначити оптимальний план транспортної задачі:

а) побудувати початковий опорний план методом "північно-західного" напрямку;

б) побудувати оптимальний план методом потенціалів:

Нехай в матриці А міститься інформація про кількість продукту в кожному місці виробництва, який необхідно доставити споживачам в кількості записаній в матриці В. Транспортні витрати, пов’язані з перевезенням одиниці продукту із одного місця виробництва одному споживачеві, записані в матриці С. Задані матриці і сказане вище для спрощення сприйняття узагальнимо в таблиці4.

Таблиця4–Поставка продукту із різних місць виробництва різним споживачам і пов’язані з цим витрати

ВиробникСпоживачЗапаси продукту
833460
527520
548230
715720
Потреба в продукті40303015

130

115

З таблиці4 видно, що запаси продукту у виробника на складах на 15 одиниць більші ніж необхідно споживачу, тобто маємо транспортну задачу з відкритою моделлю. Для розв’язку такої задачі введемо фіктивного споживача, якому необхідно отримати одиниць продукту. Всі тарифи на доставку продукту цьому споживачеві будемо вважати рівними нулю, і весь продукт потрібний цьому споживачеві залишаємо у місці виробництва. Для побудови початкового плану перевезень (таблиця5) використаємо метод "північно-західного" напрямку: заповнювати таблицю починаємо з лівого верхнього кута, рухаючись вниз по стовбцю або вправо по рядку (тарифи перевезень напишемо в правому верхньому куту кожної клітини, кількість продукту – в нижньому лівому). В першу клітину заносимо менше з чисел (min(40;60): 40. Тобто потреба в продукті першого споживача повністю задовільнено і інші клітини першого стовпця заповнювати не будемо. Рухаємося далі по першому рядку в другий стовпчик. В цю клітину записуємо менше з 30 і (60-40), тобто пишемо 20. Таким чином перший рядок заповнювати далі не будемо, оскільки запаси першого місця виробництва остаточно вичерпано: з нього ми повністю задовольняємо потребу у продукті першого споживача і частково (20 одиниць, а не 30) другого. Рухаємося по другому стовпчику на другий рядок. Сюди записуємо менше з (30-20) або 20: маємо 10, тобто другому споживачеві ми веземо 20одиниць продукту з першого місця виробництва і 10– з другого. Аналогічно заповнюємо інші клітини.

Таблиця5– Розподіл продукту по споживачам

ВиробникСпоживачЗапаси продукту
8334060
4020
5275020
1010
5482030
2010
7157020
515
Потреба в продукті4030301515130

Таким чином, в таблиці5 отримали початковий опорний план, транспортні витрати за яким складають:

Недоліком використаного методу знаходження опорного плану є ігнорування величини тарифів на перевезення продукту.

Для визначення оптимального плану перевезень використаємо метод потенціалів. Для цього кожному виробнику Аі (кожному рядку) ставимо у відповідність деяке число а кожному споживачу Ві (кожному стовпчику)– деяке число На основі таблиці5 складемо таблицю6, в якій додамо один стовпчик і один рядок для написання величини параметрів і . Їх знаходимо використовуючи першу умову оптимальності транспортної задачі: (для кожної зайнятої клітини сума потенціалів повинна дорівнювати вартості одиниці перевезення, що записана в цій клітині).

Таблиця6– Перевірка оптимальності опорного плану

ВиробникСпоживачЗапаси продукту
83340600
4020
5275020-1
1010
54820300
2010
71570205
515
Потреба в продукті4030301515130×
8382-5××

Систему потенціалів можна побудувати лише для невирожденого опорного плану. Такий план містить m+n-1 лінійно незалежних рівнянь виду з m+n невідомими (де m– кількість постачальників, n– кількість споживачів). Рівнянь на одне менше, ніж невідомих, тому система є невизначеною і для її розв’язку одному невідомому (нехай ним буде u1) придамо нульове значення.

Для того, щоб план був оптимальним, повинна виконуватись умова: для кожної незайнятої клітини сума потенціалів повинна бути менша або дорівнювати вартості одиниці перевезення, що стоїть в цій клітині: тобто Робимо перевірку для всіх вільних клітин:

З розрахунків бачимо, що умова оптимальності не виконується для клітин, А1В3, А2В1, А3В1, А4В1, А4В2, і А4В3. Клітину, в якій додатне число отримали максимальним (А2В3, оскільки max(5;2;3;6;7;8)=8) зробимо зайнятою, для цього побудуємо цикл і отримуємо таблицю7.

Таблиця7– Другий крок пошуку оптимального рішення

ВиробникСпоживачЗапаси продукту
83340600
4020
5275020-1
1010
54820300
1515
7157020-3
515
Потреба в продукті4030301515130×
83823××

Транспортні витрати при такому плані перевезення складають:

Перевірка всіх вільних клітин:

Отримали від’ємні значення у всіх клітинах окрім А1В3 (5), А1В5 (3), А2В1 (2), А2В5 (2), А3В1 (3) і А3В5 (3). Максимальне значення max(5;3;2;2;3;3)=5в клітині А1В3, тому заповнюємо і цикл будуємо для неї (цикл показано в таблиці7, результат дій в таблиці8).

Таблиця8– Третій крок пошуку оптимального рішення

ВиробникСпоживачЗапаси продукту
8334060-
401010
5275020-1
20
54820305
1515
71570202
515
Потреба в продукті4030301515130×
833-3-2××

Транспортні витрати:

тобто при такому плані перевезення товару транспортні витрати знизилися на 50грн. в порівнянні з попереднім планом перевезення. Але, щоб визначити є отриманий план оптимальним чи ні, виконаємо перевірку.

Перевірку всіх вільних клітин зобразимо в таблиці9, в якій для всіх вільних клітин запишемо різницю між сумою потенціалів і транспортними витратами в клітині.

Таблиця9– Перевірка плану отриманого в результаті третього кроку пошуку оптимального рішення задачі

----7-2
2--5-9-3
84--3
34--8-

З таблиці9 видно, що додатне значення отримали для клітин А2В1 (2), А3В1 (8), А3В2 (4), А3В5 (3), А4В1 (3) і А4В2 (4). Максимальне значення max(2;8;4;3;3;4)=8в клітині А3В1, тому заповнюємо і цикл будуємо для неї (цикл показано в таблиці8, результат дій в таблиці10).


Таблиця1– Четвертий крок пошуку оптимального рішення задачі

ВиробникСпоживачЗапаси продукту
83 340600
251025
5275020-1
20
5482030-3
1515
71570202
515
Потреба в продукті4030301515130×
8335-2××

Транспортні витрати:

що на 120грн. економніше попереднього варіанту розвезення продукції від постачальників до споживачів.

Перевірка всіх вільних клітин наведена в таблиці11.

Таблиця11– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

---1-2
2--5-1-3
--4-8--5
34-0-

План, зображений в таблиці10 не є оптимальним, оскільки отримали додатні значення в клітинах А1В4 (1), А2В1 (2), А4В1 (3), А4В2 (4). Заповнюємо клітину А4В2 і будуємо опорний план (таблиця12).

Таблиця12– П’ятий крок пошуку оптимального рішення задачі

ВиробникСпоживачЗапаси продукту
83 340600
25530
5275020-1
20
5482030-3
1515
7157020-2
515
Потреба в продукті4030301515130×
83352××

Транспортні витрати за отриманим планом перевезень складають:

що на 20грн. економніше попереднього варіанту розвезення продукції від постачальників до споживачів.

Перевірка всіх вільних клітин здійснена в таблиці 13.

Таблиця13– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

---12
2--5-11
--4-8--1
-1--4-4-

Оскільки в результаті розрахунків отримали додатні значення, то знову будуємо цикл і заповнюємо необхідну клітину. В даному випадку це буде або клітина А2В1 або клітина А1В5. Вибираємо останню, оскільки транспортні витрати на перевезення в ній менші. На від’ємних кутах циклу об’єм перевезень становить 10 і 0. Оскільки min(10;0)=0, то всі клітини залишаються незмінними і лише клітина з нульовим перевезенням переходить з А4В5 на А1В5.

Новий план зображено в таблиці14.

Таблиця14– Шостий крок пошуку оптимального рішення задачі

ВиробникСпоживачЗапаси продукту
83 340600
25305
5275020-1
20
5482030-3
1515
71570200
1010
Потреба в продукті4030301515130×
81350××

Транспортні витрати за отриманим планом перевезень складають:

Розрахунки для перевірка всіх вільних клітин здійснені в таблиці 15:


Таблиця15– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

--2-1-
4--311
--6-8--3
1--2-2-

З таблиці15 видно, що максимальне додатне значення отримали для клітини А2В1, тому заповнюємо її будуючи для неї цикл, який показано в таблиці14. Результат дій в таблиці16.

Таблиця16– Сьомий крок пошуку оптимального рішення задачі

ВиробникСпоживачЗапаси продукту
83 340600
153015
5275020-3
1010
5482030-3
1515
7157020-4
20
Потреба в продукті4030301515130×
85350××

Транспортні витрати:


що на 40грн. економніше попереднього варіанту розвезення продукції від постачальників до споживачів.

Перевірка всіх вільних клітин наведена в таблиці17.

Таблиця17– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

-2-1-
---7-3-3
--2-8--3
-3--6-6-4

План, зображений в таблиці8 не є оптимальним, оскільки отримали додатні значення в клітинах А1В2 (2) і А1В4 (1). Заповнюємо клітину А1В2 і будуємо опорний план (таблиця18).

Таблиця18– Восьмий крок пошуку оптимального рішення задачі

ВиробникСпоживачЗапаси продукту
83 340600
5103015
5275020-3
20
5482030-3
1515
7157020-2
20
Потреба в продукті4030301515130×
83350××

Транспортні витрати за отриманим планом перевезень складають:

що на 20грн. економніше попереднього варіанту розвезення продукції від постачальників до споживачів. Перевірка всіх вільних клітин здійснена в таблиці 19.

Таблиця19– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

---1-
--2-7-3-3
--4-8--3
-1--4-4-2

Оскільки в результаті розрахунків отримали додатне значення в єдиній клітині А1В4, то будуємо цикл і заповнюємо її. Новий план зображено в таблиці20.

Таблиця20– Дев’ятий крок пошуку оптимального рішення задачі

ВиробникСпоживачЗапаси продукту
83 340600
1030515
5275020-2
20
5482030-2
2010
7157020-2
20
Потреба в продукті4030301515130×
73340××

Розрахунки для перевірка всіх вільних клітин здійснені в таблиці 21:

Таблиця21– Різниця між сумою потенціалів і транспортними витратами для вільних клітин

-1----
--1-6-3-2
--3-7--2
-2--4-5-2

Рішення, зображене в таблиці20 є оптимальним, оскільки для кожної незайнятої клітини сума потенціалів менша вартості перевезень, що знаходиться у відповідній клітинці. Транспортні витрати по оптимальному плану перевезень становлять:

Знайдений оптимальний план покращив результат діяльності у порівнянні з початковим (зменшив транспортні витрати) на 685-380=305гривень.


Список використаних джерел

1. Кузнецов Ю.Н. Математическое программирование. Учебное пособие для вузов– М.: Высшая школа, 1976.– 352с.

2. Кузнецов А.В., Холод Н.И., Костевич Л.С. Руководство к решению задач по математическому программированию.– Мн.: Высш. школа, 1978.– 256с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно