Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Исследование экономико-математических моделей

Тип Реферат
Предмет Математика
Просмотров
1699
Размер файла
475 б
Поделиться

Ознакомительный фрагмент работы:

Исследование экономико-математических моделей

Задание 1

Значения цены, спроса и предложения на определенный вид товара приведены в таблице:

Цена

Х

Спрос

У1

Предложение

У2

8,622201101,93
9,618251102,93
10,618691252,93
11,616251286,93
12,613751328,93
13,613771411,93
14,611451573,93
15,610451620,93
16,610051748,93
17,610251838,93
18,67951906,93

На основе статистических данных оценить параметры регрессии спроса и предложения на цену, если допустит, что стохастическая зависимость между спросом и ценой можно описать квадратичной функцией, а предложением и ценой – линейной функцией.

Оценить адекватность эконометрических моделей статистическим данным с надежностью Р=0.95 и найти:

– точку равновесной цены: 1) графически, 2) аналитически, развязав уравнение У1=У2, 3) с помощью «паутинообразной» модели с точностью 0,01, предварительно проверив сходимость этого итерационного метода; 4) с помощью процедуры «Подбор параметра». Сравнить результаты, полученные всеми способами;

– значение коэффициента эластичности спроса и предложения в точке равновесия.

Построить доверительные зоны регрессий спроса и предложения.

Сделать выводы.

Супермаркет

Х

Y

X?

Y?

XY

20340311560091020

?

508438134960877,39899,9

?/n

254,21,967460,43,865495

Начнем с того, что найдем уравнение регрессии. Для этого найдем:

Значение дисперсии.

Для этого нам понадобится средняя арифметическая простая, которая находится по формуле: Хср=?Х/n Хср= 149,6/11=13,6?2ср=??2/n?ср= 16175,27/11=1470,5

Теперь найдем значение дисперсии по формуле Dх?=?Х?/n – (х)? Dy?=?y?/n – (y)

Dх?= 194,96–13,6?=10 D?y=2236173,39–1470,48?=73865,5

S=vD Sx=v10=3,2 Sy=v73865,5=271,8

Теперь найдем коэффициент корреляции (вон показывает степень тесноты связи Х и?). Численное значение коэффициента корреляции количественно измеряет тесноту корреляционной связи. Чем больше коэффициент корреляции тем плотнее точки корреляционного поля прилегают к линии регрессии. Знак коэффициента корреляции отражает характер влияния Х и?.

r=?X?/n-?ср*Xср/Sx*Sy r=0,99

В нашем случае очень сильная теснота корреляционной связи между ценой и предложением. Это значит, что 99% изменения предложения объясняется изменением цены.

Теперь вычислим коэффициент регрессии.

Вон определяется по формуле: b1= r*(Sy/Sx) b1=0,99* (271,8/3,2)=85,182

B0=?ср-b*Xср b0=1470,5–85,182*13,6=312,01

Уравнение регрессии будет иметь следующий вид:

У=b1х+b0=85,182x + 312,01

Строим точечную диаграмму по выходным данным Y( ). С помощью функции «Добавит линию тренда» строим линейный тип линии тренда (рис. 3.1). При этом включаем опцию вывода уравнения линии тренда и коэффициента детерминации R2.

Рис. 1.1.

Получили линейное уравнение регрессии

У=b1х+b0=85,182x + 312,01.

Уравнение линейной регрессии появилось на графике таким способом:

- После построения в MS Excel обычной точечной диаграммы за диапазонами Х и В с помощью мастера диаграмм (вкладка Стандартные / Точечная), выделяем ряд построенных точек правой кнопкой мыши, и в появившемся контекстном меню изберем команду (Добавит линию тренда).

- Тип линии тренда выберем Линейная, а на вкладке Параметры ставим галочке напротив полей Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации R2 (то есть коэффициент детерминации R2). Таким образом, построен точечный график функции В(Х) в виде корреляционного поля и к нему прибавлена линия линейного тренда. Дальше в работе избирал соответствующий тип линии тренда аналогично выстраиваются нелинейные тренды.

Выборочный коэффициент детерминации равняется R2 = 0,99813, а коэффициент корреляции составляет r = v0,9813 = 0,9911.

С помощью функции СРЗНАЧ определим средние значения величин: Xcp = 13,6, Y2cp = 1470,5. Тогда определим средний коэффициент эластичности для этой модели:

, A = 85,182*13,6/1470,5 = 0,78

то есть при росте показателя на 1% показатель Y растет на 0,78%.

Вычислим теоретические значения зависимой переменной. Средняя погрешность аппроксимации MAPE, которая характеризует точность аппроксимации выборки построенным уравнениям регрессии находится по формуле

MAPE =.

Объясним, как рассчитывается средняя погрешность аппроксимации MAPE при построении уравнения линейной регрессии (таблица 3.1).

Таблица 3.1

B

C

D

E

F

1

Y2

X

Y^

100*|Y-Y^|/Y

21101,938,61044,5705,21
31102,939,61129,7522,43
41252,9310,61214,9333,03
51286,9311,61300,1151,02
61328,9312,61385,2974,24
71411,9313,61470,4794,15
81573,9314,61555,6611,16
91620,9315,61640,8421,23
101748,9316,61726,0241,31
111838,9317,61811,2061,51
121906,9318,61896,3880,55
131470,47913,6

MAPE=

2,35

Столбец Е (Y^) рассчитывается путем подставления соответствующего Хt из диапазона С2:С13 то есть (0,65:0,89) в формулу линейной регрессии У=b1х+b0=85,182x + 312,01. То есть Y^ – это точки, что принадлежат линии тренда (точки на прямой, которая является линией тренда). Диапазон F2:F13 рассчитывается соответственно за формулой 100*|Y-Y^|/Y – это значения, которые стоят под знаком?, а следу значения MAPE – это среднее значение столбца диапазона F2:F13. Для выразительности наведем таблицу 3.1 в режиме формул (таблица 3.2).

Таблица 3.2

Таким образом, используя функции Excel, получим, что для этой регрессии MAPE = 2,35% – значение в амбарчике H13. Дальше, при расчете MAPE нелинейной функции регрессии будем использовать данный алгоритм.

Проверим линейную модель на адекватность с помощью критерия Фишера. Определим наблюдаемое значение критерия

.

Табличное значение критерия при надежности Р=0,95 и степенях свободы k1 = 1, k2 = n – 2 = 9 равняется 5,12, поскольку наблюдаемое значение больше критического, то эта линейная модель является адекватной.

Используя t-статистику, с надежностью Р=0,95 оценим значимость коэффициента корреляции. Вычислим наблюдаемое значение t-статистики

.

Табличное значение -критерия при и количества степеней свободы n – 2 = 10, tтабл = 2,26. Поскольку расчетное значение -критерію больше табличного, то линейный коэффициент корреляции является статистически значимым.

С помощью функции ЛИНЕЙН найдем стандартные погрешности параметров (вторая строка результатов): S(b0)= 53,2; S(b1)= 3,8. (Таблица 1.3)

Таблица 1.3

ЛИНИЙ
b1, b085,18181818312,006061

S1, S0

3,80948986653,1911746
0,98231787839,9542668
499,98867369
798153,636414367,0909

Вычислим t-статистики:

; .

Поскольку первое и второе значение больше табличного, то параметры уравнения регрессии есть значимыми с надежностью Р=0,95.

Построим квадратичную линию регрессии (квадратичный тренд), возведем расчеты к вспомогательной таблице 1.4.

Таблица 1.4

ЦенаСпрос
NХУ1t^2t^3t^4ytY*t^2
18,6222074,0636,15470,0819092,00164191,20
29,6182592,2884,78493,4717520,00168192,00
310,61869112,41191,012624,7719811,40210000,84
411,61625134,61560,918106,3918850,00218660,00
512,61375158,82000,425204,7417325,00218295,00
613,61377185,02515,534210,2018727,20254689,92
714,61145213,23112,145437,1916717,00244068,20
815,61045243,43796,459224,0916302,00254311,20
916,61005275,64574,375933,3116683,00276937,80
1017,61025309,85451,895951,2618040,00317504,00
1118,6795346,06434,9119688,3214787,00275038,20
?149,615306,02144,632158,0500343,8193854,62601888,4

По данным таблицы система имеет вид:

Развязав эту систему методом Гауса, одержимо такие значения коэффициентов кривой тренда: a0 = 103,167; a1 = 0,919; a2 = 0,0045.

Таким образом, уравнение параболы, которая является моделью тренда, имеет вид:

Y1x = 4583,9 – 351,37*x + 4583,9*x2

Построим оба ряду на одном корреляционном поле (рис. 1.2)

Рис. 1.2.

Коэффициент детерминации очень большой 0,9696 – связь очень сильная. Коэффициент кореляции также очень большой 0,9847 – модель адекватная.

Найдем точку равновесной цены.

Графически – Х = 12,9; В = 1409.

Паутинообразным методом: Х = 12,871; В = 1408,40. (рис. 1.3):


Рис. 1.3.

Методом Поиска решения (рис. 1.4, рис. 1.5):

Рис. 1.4.

Поиск решения
bb1b0
8,1364-351,374583,91408,73517
085,182312,011408,73517
12,8750811812,875080,0000000Целевой амбарчик
Зминюеми амбарчика

Рис. 1.5.

Методом Поиска решения: Х = 12,875; В = 1408,735.

За 3-я методами видим, что 3-й метод – метод Поиска решения точнее всего, то есть точка равновесия имеет координаты Х = 12,875; В = 1408,735.

Построим точечную графику статистических данных, линии регрессии и ее доверительной зоны.


Рис. 1.6.

Выводы

1. В результате расчетов получены модели Y1 = 8,1364X2 – 351,37Х +4583,9 и Y2 = 85,182X + 312,01. Анализируя параметры моделей возможно сделать следующие выводы, что поскольку коэффициент регрессии положительный b1, то это свидетельствует о том, что направление связи между X и Y прямой, то есть при росте Х значения Y тоже будут увеличиваться, и наоборот поскольку коэффициент регрессии відємний b1, то это свидетельствует о том, что направление связи между X и Y обратной, то есть при росте Х значения Y будут понижаться.

2. Линейный коэффициент корреляции 0,9911 и коэффициент детерминации R2=0,9823. Значение коэффициенту корреляции свидетельствует о том, что между факторами существует очень сильная прямая связь. Значение коэффициенту детерминации показывает, что на 98,23% вариация Y2 зависит от X и на 1,77% от факторов, которые не вошли в модель.

3. Расчеты за критерием Фишера F=499 и Fкр.=5,11 подтвердили адекватность модели данным задачи.

4. По критерию Стьюдента, была проведенная проверка значимости параметров модели с надежностью 95%. Поскольку первое значение t – статистики больше, чем критическое значение, то можно сделать вывод, что полученные параметры являются значимыми и для генеральной совокупности параметры уравнения линии регрессии отличаются от 0.

6. По критерию Стьюдента была проведенная проверка значимости линейного коэффициента корреляции с надежностью 95%. Поскольку значение tr – статистики больше, чем критическое значение, то можно сделать вывод, что в генеральной совокупности между факторами существует связь, то есть и коэффициент регрессии статистически значим и модель является адекватной.

Задание №2

Производственная фирма выпускает продукцию с применением труда рабочих и основных средств производства.

Х1

(основные средства предприятия)

Х2

В

(объем выпущенной продукции)

50+N90+K152+10*N/K
60+N100+K172+10*N/K
70+N110+K192+10*N/K
80+N120+K213+10*N/K
90+N130+K232+10*N/K
100+N140+K253+10*N/K
110+N150+K275+10*N/K
120+N160+K293+10*N/K
130+N170+K314+10*N/K
140+N180+K334+10*N/K
150+N190+K354+10*N/K

Построить производственную мультипликативную регрессию, оценив ее параметры.

Проверить адекватность построенной модели выходным данным.

Сделать экономический анализ параметров производственной функции.

Определить прогнозное значение выпуска при.

Построить интервал доверия прогноза с надежностью 0,95.

Оценить эффективность и масштаб производства.

На основе построенной регрессии развязать задачу оптимального выпуска продукции: определить, какая комбинация факторов производства является оптимальной, а также найти максимальный объем выпуска, если на расходы производства существует ограничение в 160 тыс. грн., стоимость аренды единицы фондов составляет (4+K) тыс. грн., стоимость труда одного человека – (1+K) тыс. грн.

Построить изокванту максимального выпуска и изокосту. Найти графическое решение задачи о комбинации ресурсов и сравнить с аналитическим.

Определить предельную норму замены единицы фондов трудом.

Производственная фирма выпускает продукцию согласно варианта 14 с применением труда рабочих и основных средств производства (табл. 2.1).

Таблица 2.1

В

Х1

Х2

2926491
31274101
33284111
35394121
372104131
393114141
415124151
433134161
454144171
474154181
494164191

Найдем точечные оценки параметров множественной линейной регрессии с помощью функции Excel ЛИНЕЙН.

Но согласно этого задания связь в модели полный функциональный R2 = 1, R = 1, коэффициенты детерминации и корреляции равняются 1 (также и в модели множественной линейной регрессии) – нет смысла бедствовать множественную линейную регрессию (рис. 2.1)

Рис. 2.1.

Задание №3 (оценивается в 10 баллов)

Значения объемов производства некоторой фирмы и соответствующих расходов производства приведены в таблице:

Объем производства YРасходы производства CЦена p.
20+N/5190+N-K16
30+N/5210+N-K16
25+N/5100+N-K14
35+N/5230+N-K14
40+N/5240+N-K13
50+N/5400+N-K12
60+N/5375+N-K15
55+N/5330+N-K12
55+N/5280+N-K12
70+N/5470+N-K13
65+N/5400+N-K13
75+N/5550+N-K12
70+N/5600+N-K12

Построить квадратичную зависимость расходов производства от объемов производства и оценить статистическое качество модели, что построено.

1. Для условий совершенной рыночной конкуренции (если значение цены на продукцию фирмы) необходимо сделать следующее:

Построить функции маржинальных расходов и дохода и построить их графику. Графически определить оптимальный объем производства.

Аналитически определить оптимальный объем производства фирмы, за которого прибыль фирмы будет максимальной, и определить соответствующий данному объему производства прибыль. Определить объем производства, за которого прибыль фирмы будет неотъемлемой.

2. Для условий монополии фирмы на рынке (значение цены на продукцию фирмы для этого случая приведено в таблице) необходимо сделать следующее:

Построить линейную зависимость цены от объемов производства и оценить статистическое качество модели, что построено.

Построить функции маржинальных расходов и дохода и построить их графику. Графически определить оптимальный объем производства.

Аналитически определить оптимальный объем производства фирмы, за которого прибыль фирмы будет максимальной, и определить соответствующий данному объему производства прибыль. Определить объем производства, за которого прибыль фирмы будет неотъемлемой.

Проанализировать и описать полученные результаты.

Расчетная таблица для варианта 14 выглядит следующим образом:


Объем производства YРасходы производства CЦена, р
22,820316
32,822316
27,811314
37,824314
42,825313
52,841312
62,838815
57,834312
57,829312
72,848313
67,841313
77,856312
72,861312

Корреляционное поле с линией квадратичного тренда (рис. 3.1):

Рис. 3.1.

Уравнение квадратичного тренда: в = 0,0973х2 – 2,4947х + 179,58.

R = vR2 = v0,8696 = 0,932523 – сильная корреляция.

График объемов производства и доходов (рис. 3.2):


Рис. 3.2.

Следу, оптимальный объем производства №1 = 22,8 – минимальная расходная маржа.

Определим доход (рис. 3.3)

Рис. 3.3.

NОбъем производства YРасходы производства C

Цена, р

р

Доход для р=15

113,5333333320316150

Доход (прибыль) будет при объеме производства В = 13,5333.

N

Объем производства YРасходы производства C

Цена, р

р

Доход для р=15

113,5333333320316150
232,822316269
327,811314304
437,824314324
542,825313389
652,841312379
762,838815554
857,834312524
957,829312574
1072,848313609
1167,841313604
1277,856312604
1372,861312479
Максимальный доход609

Максимальный доход будет при объеме производства 72,8.

Зависимость цен от объема производства (рис. 3.4.)

Рис. 3.4.

Графика объемов производства и доходов для цен р (рис. 3.5).


Рис. 3.5.

Максимальный доход 554 при объему производства 62,8 (рис. 3.6).

N

Объем производства YРасходы производства C

Цена, р

Доход для р=15

Доход для р

113,53333333203160161,8
232,822316269301,8
327,811314304276,2
437,824314324286,2
542,825313389303,4
652,841312379220,6
762,838815554554
857,834312524350,6
957,829312574400,6
1072,848313609463,4
1167,841313604468,4
1277,856312604370,6
1372,861312479260,6

Максимальный доход

609554

Рис. 3.6.

Неотъемлемый доход для второго варианта при объеме производства Y=12, 68 (рис. 3.7 и 3.8).


Рис. 3.7.

N

Объем производства YРасходы производства C

Цена, р

Доход для р

112,6875203160

Рис. 3.8.

Список использованной литературы

1. Кулинич О.И. Економетрия: Практикум. – Хм.: Издательство «Подилля», 1998 – 157 с.

2. Лук’яненко И.Г., Красникова Л.И. Економетрика: Учебник. – К.: Общество «Знания», КОО, 1998 – 494 с.

3. Наконечный С.И., Терещенко Т.О., Романюк Т.п. Економетрия: Учебник. – Вид. 2-ге, допов. но перероб. – К.: КНЕУ, 2000 – 296 с.

4. Толбатов Ю.А. Економетрика: Учебник для студентов экономических специальностей высших учебных заведений. – К.: Четвертая волна, 1997 – 320 с.

5. Гливенко С.В., Соколов М.О., Телиженко О.М. Экономическое прогнозирование: Навч. пособие. – Сумы, ВТД «Университетская книга», 2004. – 207 с.

6. Грабовецкий Б.Е. Экономическое прогнозирование и планирование: Навч. пособие. – К.: Центр учебной литературы, 2003. – 188 с.

7. Ерина А.М., Кальян З.О. Теория статистики: Практикум. – К.: КНЕУ, 1997. – с. 187–190.

8. Гусаров В.М. Теория статистики: Учебн. пособие для вузов. – М., 1998. – с. 143–155.

9. Статистика: Учебник / С.С. Герасименко но др. – К., 1998. – с. 138–144.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно