Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Об ориентационной поляризации спиновых систем

Тип Реферат
Предмет Математика
Просмотров
1448
Размер файла
22 б
Поделиться

Ознакомительный фрагмент работы:

Об ориентационной поляризации спиновых систем

Валерий Эткин

Введение

В одной из наших предыдущих статей, посвященных термодинамике спиновых систем, была выявлена несостоятельность попыток свести к теплообмену процессы установления единой ориентации противоположно направленных ядерных спинов [1]. Несколько позднее было показано, что процессы упорядочивания взаимной ориентации имеют место и в макромире, свидетельствуя о зависимости потенциальной энергии от взаимной ориентации вращающихся тел и тел с несферической симметрией [2]. Затем было показано, что существование ориентационных процессов непосредственно вытекает из развернутой формулировки основного закона термодинамики пространственно неоднородных сред [3]. Представляет интерес показать, что учет «ориентационной» степени свободы при термодинамическом описании спин-спинового взаимодействия приводит к результатам, согласующимся с экспериментом.

Основное уравнение термодинамики спиновых систем

Известно, что потенциальная энергия взаимодействия между частицами зависят от взаимной ориентации их спинов. Энергетическая выгодность состояния с определенной взаимной ориентацией спинов предопределяет характер ряда химических превращений (в частности, образование орто- или параводорода), объясняет ферромагнетизм и антиферромагнетизм [4]. Так, в молекулах с ковалентной химической связью (например, в молекулах водорода) энергетически выгоднее состояние, в котором спины валентных электронов соединяющихся атомов антипараллельны. Напротив, в ферромагнетике более низкой энергией обладает состояние, в котором спины электронов в незаполненных оболочках соседних атомов (и их магнитные моменты) параллельны, благодаря чему возникает спонтанная намагниченность. Поэтому при описании ряда макрофизических свойств веществ необходимо учитывать протекающие в них процессы ориентации (переориентации) спинов ядерных частиц. С термодинамической точки зрения это означает учет в ее уравнениях еще одной степени свободы, связанной с суммарным собственным моментом количества движения ядер исследуемых веществ J. Эта величина зависит как от общего количества нуклонов в ядрах конденсированных веществ, так и от взаимной ориентации спинов протонов и нейтронов. Известно, что ядерные частицы при своем вращении испытывают прецессию, т.е. движение, при котором оси их вращения образуют с вектором H пространственно ориентированный угол φ. Кроме того, проекция спинов Ii i-х элементарных частиц на выбранное направление в пространстве (например, на направление внешнего магнитного поля H) изменяется в зависимости от угла φ=|φ| между ними от –Ii до +Ii (что соответствует φ=180° и φ=0°). Следовательно, суммарный момент J может быть выражен через спины Ii соотношением:

J = ΣħIi·cos φi, (1)

где ħ – постоянная Планка.

Наряду с этим, как известно, ядра, атомы и молекулы конденсированных веществ обладают некоторым магнитным моментом M, обусловленным главным образом орбитальным движением электронов вокруг ядра и их спинами. Таким образом, внутренняя энергия U конденсированных веществ зависит в общем случае не только от их температуры (или энтропии S), напряженного состояния (тензора деформаций D) и от их магнитного момента M, но и от суммарного момента количества движения ядер исследуемых веществ J(φ), зависящего от взаимной ориентации спинов. Экстенсивные параметры S, D, M и J являются в принципе независимыми, поскольку ядерный спин J может отсутствовать, несмотря на отличные от нуля значения параметров S, D и M. Это означает, что внутренняя энергия U конденсированных веществ как функция их состояния имеет вид U=U(S, D, M, J), а ее полный дифференциал выражается соотношением:

dU ≡ TdS – ПdD + НdM + РdJ, (2)

где T ≡ (∂U/∂S) – абсолютная температура системы; П≡(∂U/∂D) – тензор давлений; Н≡(∂U/∂M) – напряженность внешнего магнитного поля; Р≡(∂U/∂J).

В этом выражении член РdJ характеризует работу, связанную с ориентационной поляризацией системы ядерных спинов (подобно тому, как член НdM определяет работу, связанную с намагничиванием системы). Хотя векторная величина Р имеет размерность угловой скорости, она далека по физическому содержанию от этого понятия, поскольку говорить об угловой скорости вращения ядра или атома подобно твердому телу не имеет смысла. Поэтому мы будем называть величину Р вектором ориентационной поляризации спиновой системы.

Из практических соображений потенциальную энергию системы во внешнем магнитном поле НM целесообразно исключить из понятия внутренней энергии, вводя так называемую «собственную внутреннюю энергию» U*=U–НM [5]. Тогда, используя преобразование Лежандра НdM=d(НM)–MdН, выражение (2) можно переписать в виде:

dU* = TdS – ПdD – MdН + РdJ. (3)

Отсюда на основании свойств полного дифференциала следуют дополнительные дифференциальные соотношения вида

(∂M/∂J)Н = (∂Р/∂Н)J (4)

Согласно этому соотношению, ориентационная поляризация системы ядерных спинов Р изменяется под влиянием внешнего магнитного поля Н в той же мере, что и намагниченность системы – вследствие переориентации спиновой системы (изменения момент количества движения J). Поскольку же в условиях постоянства магнитного поля Н изменение M может быть обусловлено лишь изменением ядерной намагниченности (дипольного магнитного момента ядер) MЯ, который связан с суммарный момент количества движения J так называемым гиромагнитным отношением γ [4]

MЯ = γ·J, (5)

то вместо (4) можно написать

(∂Р/∂Н)J = γ (6)

Таким образом, ориентационная поляризация системы ядерных спинов под влиянием внешнего магнитного поля действительно имеет место и выражается тем же гиромагнитным отношением γ. Отличие от нуля левой и правой частей соотношения (4) подтверждает обоснованность учета дополнительной степени свободы, связанной с ориентацией спиновых систем.

Термодинамика позволяет также установить условия равновесия двух спиновых систем. С этой целью применим критерий равновесия Гиббса dUS≥0 к рассмотренной в [1] совокупности двух спиновых подсистем кристалла LiF. Будучи экранированной от воздействия внешнего магнитного поля (Н=0), эта система в целом образует в целом недеформируемую (dD=0) теплоизолированную систему (dS=0), Разбивая систему на две части и обозначая их параметры вслед за Гиббсом соответственно одним и двумя штрихами, имеем для нее

dU = dU' + dU" = Р'dJ' + Р"dJ" ≥ 0 (7)

Рассмотрим это соотношение совместно с уравнениями наложенных связей, которые вытекают из закона сохранения момента количества движения:

dJ = dJ' + dJ" = 0. (8)

Рассматривая (7) совместно с (8), находим, что условию спин – спинового равновесия двух систем отвечает равенство векторов их ориентационной поляризации:

Р' = Р". (9)

Это выражение показывает, что даже в отсутствие внешнего магнитного поля спин – спиновое взаимодействие приводит к установлению единой ориентации двух спиновых систем. Это явление и было обнаружено с опытах по смешению двух спиновых систем с противоположной ориентацией спинов [1]. Таким образом, признание факта существования ориентационных процессов и связанной с ней дополнительной степени свободы конденсированных веществ приводит к результатам, согласующимся с опытом.

Обсуждение результатов

Предложенное термодинамическое описание процессов спин-спинового взаимодействия свободно от противоречий, связанных с попытками приписать системе ядерных спинов определенную (положительную или отрицательную) абсолютную температуру и тем самым свести процесс установления единой ориентации двух спиновых подсистем к процессу выравнивания их температур [5]. Этот пример еще раз подтверждает справедливость вывода [6] о том, что основные методологические ошибки при применении термодинамики обусловлены нарушением довольно очевидного положения, согласно которому число независимых переменных, определяющих состояние какой-либо системы, равно числу независимых процессов, протекающих в ней.

С другой стороны, предложенный подход подтверждает обоснованность рассмотрения спин-спинового взаимодействия как особого, качественно отличимого и несводимого к другим процесса, связанного с упорядочиванием ориентации спинов разнородных нуклонов, атомов и веществ в целом. Выделение и изучение специфики подобных ориентационных процессов может пролить новый свет на многие явления, проявляющиеся в том числе и на макроуровне. В качестве примера сошлемся на обнаруженное недавно группой ученых Массачусетского технологического института непостоянство гравитационной постоянной (точнее, зависимость ее от ориентации тел относительно звезд). Если (как это имело место в рассмотренном случае) внутренняя энергия системы зависит от взаимной ориентации ее компонентов или субкомпонентов (в данном случае – от взаимной ориентации гравитирующих тел), то сила их взаимного притяжения F, определяемая как производная от U(r, φ) по радиус-вектору r, также будет зависеть от φ:

F = –∂U(r, φ)/ ∂r = F(r, φ). (10)

Поскольку же в соответствии с законом Ньютона

U(r) = –Gm1m2/r12(11)

потенциальная энергия взаимодействия двух тел массой m1 и m2 при неизменном расстоянии между ними r12 зависит только от гравитационной постоянной G, остается признать последнюю также зависящей от ориентации тел, т.е. G=G(φ).

Список литературы

Эткин В.А. О специфике спин-спиновых взаимодействий. НиТ, 2002.

Эткин В.А. Об ориентационном взаимодействии спиновых систем. НиТ, 2002.

Эткин В.А. К математическому моделированию торсионных и ориентационных взаимодействий. // Электронный журнал «SciTec», 20.04.03.

Физический энциклопедический словарь. – М.: Советская энциклопедия, 1984.

Базаров И.П. Термодинамика. Изд. 4-е. М.: Высшая школа, 1991.

Эткин В.А. Термодинамика неравновесных процессов переноса и преобразования энергии. Саратов: СГУ, 1991.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно