Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Исследование колебаний механической системы с одной степенью свободы

Тип Реферат
Предмет Промышленность и производство
Просмотров
842
Размер файла
45 б
Поделиться

Ознакомительный фрагмент работы:

Исследование колебаний механической системы с одной степенью свободы

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра теоретической механики

КУРСОВАЯ РАБОТА

«Исследование колебаний механической системы

с одной степенью свободы»

по разделу «Динамика»

Кафедра теоретической механики

Рецензия

На курсовую работу

Студента __Кисова Ивана____________

(фамилия, имя, отчество)

Группы _121142__________________

Вариант № ___ количество страниц

Курсовая работа по содержанию соотве-

тствует / не соответствует выданному

заданию и выполнена в полном / не в

полном объеме.

КР может быть допущена к защите с

добавлениембаллов рецензента

после успешной защиты.

Рецензент_______ /_____________

(Ф.И.О.)

«____»_____________200 г.

ТУЛА 200


Оглавление

Аннотация

Содержание задания

1. Применение основных теорем динамики механической системы

1.1.Постановка второй основной задачи динамики

1.2.Определение закона движения системы

1.3.Определение реакций внешних и внутренних связей

2. Построение алгоритма вычислений

3. Применение принципа Лагранжа-Даламбера и уравнений Лагранжа второго рода

3.1. Составление дифференциального уравнения движения механизма с помощью принципа Даламбера - Лагранжа

3.2. Составление дифференциального уравнения движения механизма с помощью уравнения Лагранжа 2-го рода

Анализ результатов

Список использованной литературы


Аннотация

Дана механическая система с одной степенью свободы, представляющая собой совокупность абсолютно твёрдых тел, связанных друг с другом посредством невесомых нерастяжимых нитей, параллельных соответствующим плоскостям. Система снабжена упругой внешней связью с коэффициентом жесткости с. На первое тело системы действует сила сопротивления R=-µ*V и возмущающая гармоническая сила F(t) = F0 * sin(pt).

Трением качения и скольжения пренебрегаем. Качение катков происходит без скольжения, проскальзывание нитей на блоках отсутствует. Применяя основные теоремы динамики системы и аналитические методы теоретической механики, определён закон движения первого тела и реакции внешних и внутренних связей. Произведён численный анализ полученного решения с использованием ЭВМ.

В данной курсовой работе мы исследовали динамическое поведение механической системы с использованием основных теорем и уравнений теоретической механики. Дифференциальное уравнение движения механической системы получено тремя способами. Во всех случаях коэффициенты тnp,п,к получились одинаковыми и совпали с компьютерной распечаткой, что говорит об их правильности. В процессе решения дифференциального уравнения данной механической системы были получены законы движения первого груза, его скорость и ускорение в зависимости от времени t. На основании этих зависимостей были определены законы изменения всех остальных характеристик механической системы, в том числе и реакции связей


Содержание задания

Исследовать движение механизма с одной степенью свободы. Определить реакции внешних и внутренних связей. Массами нитей и упругих элементов пренебречь. Нити считать нерастяжимыми и абсолютно упругими. В качестве координаты, определяющей положение системы, принять перемещение груза 1 -S. К грузу 1 приложена возмущающая сила F(t).

Исходные данные:

M1, М2,М3 - массы тел механической системы.

с - жесткость упругого элемента.

г2 - радиус блока 2.

R3, Гз -радиусы ступеней катка 3.

i2 - радиус инерции блока 3.

µ - коэффициент сопротивления.

Fo — амплитуда возмущающей силы


m1= 3mm2= mm3=mm4= 2m

r2=r R2=3rr3=rr4=2r

i2=2r Xo=6 см Xo= 0 см/c

m= 1кг r= 0.1 м p = 3.14 F 0 = 50 Н F(t)= F 0 sin(pt) c= 4000 Н/м μ=100Н*с/м

R= - μV

Часть 1. ПРИМЕНЕНИЕ ОСНОВНЫХ ТЕОРЕМ ДИНАМИКИ

МЕХАНИЧЕСКОЙ СИСТЕМЫ

1.1. Постановка второй основной задачи динамики

Рис. 1 Расчётная схема

На рис. 1 обозначено:

P1,P2,P3 - силы тяжести, N1, N2 - нормальная реакция опорной плоскости,


Fупр - упругая реакция пружины,


Fсц - сила сцепления с опорой,

Y2,X2, - реакции подшипника блока 2,


R = - µ*Vсила вязкого сопротивления,


F(t)- возмущающая сила.

Рассматриваемая механическая система имеет одну степень свободы (нити нерастяжимые, качение катка 3 происходит без скольжения). Будем определять ее положение с помощью координаты S. Начало отсчета координаты совместим с положением статического равновесия центра масс груза 1.

Для построения дифференциального уравнения движения системы используем теорему об изменении кинетической энергии механической системы в дифференциальной форме:

dT

dt= ∑Nek + ∑Nik(1-1)

где Т- кинетическая энергия системы,

∑Nek- сумма мощностей внешних сил,

∑Nik-сумма мощностей внутренних сил.

Теорема (1.1) формулируется так: "Производная по времени от кинетической энергии механической системы равна алгебраической сумме мощностей внешних и внутренних сил, действующих на точки механической системы.

Вычислим кинетическую энергию системы как сумму кинетических энергий тел 1-3:

T= T1+T2+T3.(1.2)

Груз 1 совершает поступательное движение. Его кинетическая энергия равна:

T1= 1/2 m121(1.3)

где Vl - скорость груза 1.

Блок 2 совершает вращательное движение около неподвижной оси. Его кинетическая энергия

T2=1/2*m2*υ22+1/2*Jc2ω 22(1.4)

где

Jn2 = m2*i22: - момент инерции относительно центральной оси блока;

ω2- угловая скорость блока.

Блок 3 совершает вращательное движение,

T3=1/2*Jc3ω23 гдеjc3=1/2 m3*r23 (1.5)

Каток 4 совершает плоскопараллельное движение

T =1/2*m4 *vc42 +1/2*Jc4 * ω42гдеJc4 = Ѕ*m4 *r42

Кинетическая энергия всего механизма будет равна:

T=1/2m1υ12+ 1/2m2 *vc22 +1/2*Jc2ω22 +1/2*Jc3ω23 + 1/2*m4 *vc42+1/2*Jc442(1.6)

Выразим υn3.,ω2,ω3 через скорость груза 1

vc2 = υ1=υ=S; => ω3= (R2 + r2)*v/R3*V3 vc44* r 4 = (R2 + r2)*v/2R2 (1.7)

ω2 =v/r 2

Подставляя (1.3), (1.4), (1.5), в (1.6) с учетом (1.7), и вынося 1/2 и V2 за скобки, получаем:T= 1/2(m +m + Jc2 т пр /R22 + Jc3 * (R2 - r 2 ) 2 / R2 * r 2 + m4 (R2 + r 2 ) 2 /4r22 + Jc4(R2 - r 2 ) 2 /4r22R22 )*υ2

T=1/2m трv3 2(1-8)

т пр =m +m2 +m3 1/R22 + 1/2m3(R2 - r 2 ) 2 / R2 + m4 (R2 + r 2 ) 2 /4r22 + m4 (R2 + r 2 ) 2 /4r22

т пр=8, 21кг(1-9)

Найдем производную от кинетической энергии по времени:

dT/dt= т пр – S*S(1.10)

вычислим сумму мощностей внешних и внутренних сил.

Мощность силы равна скалярному произведению вектора силы на скорость точки ее приложения:

N = FV = Fvcos(F, v);(1-11)

Рассматриваемая нами механическая система является неизменяемой, т.е. тела, входящие в систему, недеформируемые и скорости их точек относительно друг друга равны нулю. Поэтому сумма мощностей всех внутренних сил будет равняться нулю:

∑N’=0(1.12)

Будут равняться нулю и мощности некоторых внешних сил, в том числе сил, приложенных в точках, скорости которых равны нулю. Как видно из расчетной схемы, таковыми являются силы N4, ,Y3,X3,P3,Fвд. Сумма мощностей внешних сил:

N=F*V+pV-RV+p2V2-Fупр*V4

С учетом кинематических соотношений (1.7) сумму мощностей внешних сил преобразуем к виду:

(1-13) N= F(t)*V1 +p1 V1 -RV1 + p2V1 -Fупр V1 * R2 +r2 /2R2 ,

N =( F(t) +p1 – R +p2 - FупрR2 +r2 /2R2)V1 , или

N= Fпр * V

Где Fnp приведенная сила.

Упругую силу считаем пропорциональной удлинению пружины. которое равно сумме статического ѓст и динамического S4 удлинений

Fупр=с(ѓст + S4 ) (1-15)

Сила вязкого сопротивления R =μ V = μ S тогда

Fпр= F(t)+p1 – μ*S+ p 2 – c(ѓст+ R2 +r2 /2R2 * S) R2 +r2 /2R2 , (1-16)

В состоянии покоя приведенная сила равна нулю.

Пологая в (1-16) , что S=’S=0 и F(t)= 0 получаем условие равновесия

Fпр= p+ p2 = c *ѓст= R2 +r2 /2R2 =0, (1-17)

Отсюда статистическое удлинение пружины равно:

- c *ѓстR2 +r2 /2R2 = -p1- p ;

ѓстR2 +r2 /2R2 =(p 1 + p 2 )/c => ѓст =(p 1 + p 2 )/c* 2R2 / R2 +r2

ѓст =1/c (p 1 + p2) * 2R 2/R2 +r2 ;(1-18)

Подставляем выражение (1-18) в, (1-16) получаем окончательное выражение для приведенной силы .

ѓпр = F(t) + p1 +p2 - μS – c* R2 +r2 /2R 2 *1/c (p 1 + p2)* *2R 2/R2 +r2- c*(R2 + r2 ) 2/4R22 *S

ѓпр= F(t) - μS- c*(R2 + r2 ) 2/4R22 *S; (1-19)

Подставим выражение для производной от кинетической энергии и сумму мощностей всех сил с учетом (1-19) в (1-1) полуучаем дифференциальное уравнение движения системы ;

mпр=S=- c*(R2 + r2 ) 2/4R22 *S- μS+ F0 sin(pt) (1-20)

S = 2nS +k2 S +F0 / mпр sin(pt) ; (1-21)

Где k циклическая частота свободных колебаний ;

n = μ/2* mпр =100/2*8.21= 6.1с -1 ;

n – показатель степени затухания колебаний ;

k= R2 +r2 /2R2c/mпр =

1.2 Определение закона движения системы

Проинтегрируем дифференциальное уравнение (1.26). Пусть возмущающая сила изменяется по гармоническому закону:

F = F0-Sm{pt),(2.1)

Где Fo - амплитуда возмущающей силы,

р - циклическая частота возмущения.

Общее решение S неоднородного дифференциального уравнения (1.26) складывается из общего решения однородного уравнения S и частного решения неоднородного: S=Sод+S . Однородное дифференциальное уравнение, соответствующее данному неоднородному (1.26) имеет вид:

S + 2*n*S + kz*S = 0;.(2.2)

Составим характеристическое уравнение и найдем его корни

L2+2*n*L + k2! =0,

L 1.2 = -n +- n 2 -k 2 ;

т.к n <k ,=> решение однородного уравнение имеет вид :

Sос =a * e*sin (k 1 *t +β ), где k 1 = k 2 -n 2 ; частное решение дифференциального уравнения ищем в виде правой части:

k 1 =18,31с-1 ;

Sт= A* sin (pt) + B*cos(pt); далее получаем:

(A(k2 - p2 )- 2npB)*sin(pt) + (2 npA +B(k2 - p2 ) )cos(pt)= F0 /mпр*sin(pt);

Сравнивая коэффициенты при соответствующих тригонометрических функциях справа и слева , получаем систему алгебраических уравнений для определения состояния А и В

A(k2 - p2 )- 2npB = F0 /mпр решая эту систему получаем следующие выражения

2npА + В(k2 - p2 )= 0

A= k2 - p2 / (k2 - p2 ) 2 + 4n2 p2 * F0 /mпр ; А= 0.011м;

B= - 2np/(k2 - p2 ) 2 + 4n2 p2 * F0 /mпр ; B= -0.002м;

Общее решение дифференциального уравнения :

S= αe–nt sin (k 1 t β) + Asin (pt) + B cos(pt);

S= αe–nt (-nsin(k 1 t+β) +k 1 cos(k 1 t+β)) +Apcos(pt) – Bpsin(pt);


Постоянные интегрирования αи βопределяем из начальных условий

S 0 = α sin(β) + B ;

t =0 имеем

S 0 = α(- nsin (β) + k 1 cos (β)) + Ap

решая эту систему получаем :

α= (S 0 - B) 2 + (S 0 - B) - Ap) 2 1/k 2 1 α= 0.045;

β= arctg k 1 (S 0 –B) 2 / S 0 +n(S 0 - B)- Ap β=1.2;

1.3. Определение реакций внешних и внутренних связей



Рис.2

Рис. 2

Для решения этой задачи расчленяем механизм на отдельные части и изображаем расчетные схемы отдельно для каждого тела (рис. 2).

Определение реакций связей проведем с помощью теоремы об изменении кинетической момента и теорема об изменения количества движения.

Тело№1 αm1 V1 /dt= p1 +T12 S+F+R; наось s : m1S 1=p1+F-R-T12 ;

Тело№2 αm2 V2 /dt= p2+T21 +T20+ T23; наось s : m2S=p2+ T21 -T20 -T23

т.кV2 = V1=V=S=>dV1/dt= dV2/dt;dl2z =∑M2 z

dJc2ω/dt= T20 R- T23 r 2 ;

Тело№3 dl 3z /dt=∑M 3z => dJc3ω 3/dt= T32 r 3 – T34r 3 ;

Αm3 V3/dt=x 3 +y3+p3+T34+T12

на ось 0x3 :0=x3 +T34 ; на ось 0y3 : 0=y3 - p3 - T32 ;

Тело№4 αm4V4 /dt=T 43 +P 4 +N 4 +Fcy+F упр ;

на ось 0x4 : m 4 S 4 =T 43 -F упр +Fsy

с учетом кинематических соотношений (1-7) полученную систему уравнений преобразуем к виду:

m 1 S= p 1 +F – R-T 12 ; 0 = N 4 - p 4 ; x 3 = T 34 R

m 2 S= p 2 +T 21 - T 20 -T 23 ; y 3 =p 3 +T 34

J c2 1/R 2 S = T 20 R 2 - T 23 r 2 ; J c4 m 4 R 2 +r 2 /2R 2 r 4 * S=T 43 *

J c3 R 2 +r 2 /R 2 r 3 S= T 32 r 3 - T 34 r 3 ; *r 4 - F cy r 4 R

m 4 R 2 +r 2 /2R 2 * S= T 43 - Fупр+F cy ;

Решая эту систему получаем выражение для определения реакций связей:

T 12 = m g + F 0 sin (pt) – μS – mS x2 = T43

T 20 = R 2 r 2 ( p 2 + T 21 - m 2 S) + J c2 S/ R 2 (R 2 +r 2 ); y3= p2 + T 32

T 23 = R22 (p2 + T21 - m2 S) + Jc2 S / R 2 (R 2 +r 2 );

T 43 = T 32 - V c3 /V 3 * (R 2 + r 2 )/ R2 r2 * S

F c = T 32 - (R 2 -r 2 )/ R2 r4 *(JC3 r 4 / r 2 r 3 + Jc4 /2r 4);


Часть 2. ПОСТРОЕНИЕ АЛГОРИТМА ВЫЧИСЛЕНИЙ

2,1 Исходные данные m1 , m2, m3 , m4 , r 2 , R 2, r 3 , r 4 , i2 ,μ , F0 , p , S0 , S0 , g ,c.

2,2 Вычисление констант

n = μ/2* mпр; k 1 = k 2 - n 2 ;

ѓст=1/c (p 1 + p2) * 2R 2/R2 +r2 ;

A= k2 - p2 / (k2 - p2 ) 2 + 4n2 p2 * F0 /mпр;

B= - 2np/(k2 - p2 ) 2 + 4n2 p2 * F0 /mпр;

α= (S 0 - B) 2 + (S 0 - B) - Ap) 2 1/k 2 1 ;

β= arctg k 1 (S 0 –B) 2 / S 0 +n(S 0 - B)- Ap ;

2,3 Задание начального времени t=0

2,4 Вычисление значений функций в момент времени t

S= αe–nt sin (k 1 t β) + Asin (pt) + B cos(pt);

S= αe–nt (-nsin(k 1 t+β) +k 1 cos(k 1 t+β)) +Apcos(pt) – Bpsin(pt);

S = 2nS +k2 S +F0 / mпр sin(pt) ;

Fупр=с(ѓст + S4 );

2,5 Вычисление реакций связей

T 12 = m g + F 0 sin (pt) – μS – mS x2 = T43

T 20 = R 2 r 2 ( p 2 + T 21 - m 2 S) + J c2 S/ R 2 (R 2 +r 2 ); y3= p2 + T 32

T 23 = R22 (p2 + T21 - m2 S) + Jc2 S / R 2 (R 2 +r 2 );

T 43 = T 32 - V c3 /V 3 * (R 2 + r 2 )/ R2 r2 * S

F c = T 32 - (R 2 -r 2 )/ R2 r4 *(JC3 r 4 / r 2 r 3 + Jc4 /2r 4);

2,6 Вывод на печать значений искомых функций в момент времени t

2,7 определение значения времени на следующем шаге t = t + ∆t

2.8 Проверка условия окончания цикла t ≤ tкон

2,9 Возврат к пункту 2,4


Часть 3. ПРИМЕНЕНИЕ ПРИНЦИПА ДАЛАМБЕРА-ЛАГРАНЖА И УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА

3.1 Составление дифференциального уравнения движения механизма с помощью принципа Даламбера - Лагранжа

Общее уравнение динамики системы есть математическое выражение принципа Даламбера - Лагранжа:

(1)∑σAk+ ∑ σA 0k=0;


где

∑ σAk = ∑Fkσrk- сумма элементарных работ всех активных сил на

возможном перемещении системы;

- сумма элементарных работ всех сил инерции на

(=1*■=!

возможном перемещении системы.

Рис.3

Изобразим на рисунке активные силы и силы инерции (рис 3). Идеальные связи N4, X3, Y3, Fcu не учитывают и не отображают на расчётной схеме, поскольку по определению работа их реакций на любом возможном перемещении равна нулю.

Сообщим системе возможное перемещение. Возможная работа активных сил определяется как сумма следующих элементарных работ:

∑ σA 0k= Aσ+ σAp + σAp1 +σAp2 + σAp4 + σAFупр ;

Вычисляем последовательно элементарные работы активных сил и суммируя их получаем:

(2) ∑ σA 0k= - F пр σS , ∑- σA 0k= ( - c (R 2 + r2 ) 2 / 4R22 * S – μS + F(t)) *σS;

Найдем возможную работу сил инерции:

∑ σA 0k= -φ1 σS1 – φσS2 - M2σφ2 – M3 σφ3 – φ4σS4 - M4 φ4σ ;

Запишем выражение для главных векторов и главных моментов сил инерции

φ1= m1 a =m1 S; φ4= m4 a 4 = m4 S4; M 4 = J c4 *E 4 = J c4 * φ4;

φ2= m2 a 2 = m2 S 2; M 2 = J c2 *E 2 = J c2 * φ2 ;

φ3=0 ; M 3= Jc3 *E 3 = Jc3 * φ3 ;

Используя кинематические уравнения (1.7) можно записать

σS2 = σ S; σ φ2 = 1/R 2 σ S ; σ φ3 = R 2 + r 2 / R 2 r 3 * σS;

σ φ4 = R 2 + r 2 / R 2 r 3 * σS; σS4 = R 2 + r 2 / 2R 2* σS;

S4 = R 2 + r 2 / 2R 2* S

S2 =S ; φ2 = 1/R2 *S; φ3 = R 2 + r 2 / R 2 r 3 * S;

φ3 = R 2 + r 2 / 2R 2 r 3 *S;


Теперь возможную работу сил инерции можно преобразовать к виду :

∑ σA 0k= -( m1 +m2 + Jc21/R 22 + (R 2 + r 2 )2/ R 22r 3 2 + m4 ( R2+ r 2 )2/ 4R 22

+ J c4(R 2 + r 2 )2/ 4R 22 r 3 2 )* Sσ S;

(3)∑ σA 0k = - mпр* Sσ S;

далее подставляя выражение (2) и (3) в (1) т.е в общее уравнение динамики получаем

Поделив это уравнение на σS = 0 получаем дифференциальное уравнение вынужденных колебаний системы:

S + 2nS + k2 S = F0 /mпрsin (pt) , где k = R2 +r2 /2R2 c/mпр= 19 , 3 c -1

n = μ / 2 mпр = 6.1 c -1

Полученное нами дифференциальное уравнение полностью совпадает с полученными ранее уравнением

3.2. Составление дифференциального уравнения движения механизма с помощью уравнения Лагранжа 2-го рода

Составим теперь уравнение Лагранжа 2-ого рода. В качестве обобщенной координаты примем перемещение груза 1 - S. Для механической системы с одной степенью свободы дифференциальное уравнение движения в обобщенных координатах имеет вид:

d/dt * σ T/ σS - σ T/ σ S (3.3)

где Т — кинетическая энергия системы; Q - обобщенная сила; S - обобщенная координата; S - обобщенная скорость. Выражение для кинетической энергии системы было найдено ранее:

(3.4) T=1/2m трv3 2

т пр =m +m2 +m3 1/R22 + 1/2m3(R2 - r 2 ) 2 / R2 + m4 (R2 + r 2 ) 2 /4r22 + m4 (R2 + r 2 ) 2 /4r22

Производные от кинетической энергии:

(3.5) σT/ σS= 0; σT/ σS = т прS ; d/dt * σT/ σS= т прS;

Для определения обобщенной силы Q сообщим системе возможное перемещение σS (рис.3) и вычислим сумму элементарных работ всех активных сил на возможных перемещениях точек их приложения [см.(2)].

(3.6) ∑ σA 0k= - F пр σS , ∑- σA 0k= ( - c (R 2 + r2 ) 2 / 4R22 * S – μS + F(t)) *σS;

С другой стороны для системы с одной степенью свободы:

∑ σA 0k=QσS( 3.7)

Сравнивая два последних соотношения, получаем:

Q = - c (R2 + r 2 ) 2 /4R22 *S – μ*S + F(t).

Подставляя производные (3.5) и обобщенную силу (3.8) в уравнение Лагранжа(3.3), получаем;

Q = - c (R2 + r 2 ) 2 /4R22 *S – μ*S + F0m(pt) ,

S + 2nS + k2 S = F0 /mпрsin (pt) , где k = R2 +r2 /2R2 c/mпр= 19 , 3 c -1

n = μ / 2 mпр = 6.1 c -1


Анализ результатов

В данной курсовой работе мы исследовали динамическое поведение механической системы с использованием основных теорем и уравнений теоретической механики. Дифференциальное уравнение движения механической системы получено тремя способами. Во всех случаях коэффициенты тнр,п,к получились одинаковыми и совпали с компьютерной распечаткой, что говорит об их правильности. В процессе решения дифференциального уравнения данной механической системы были получены законы движения первого груза, его скорость и ускорение в зависимости от времени t На основании этих зависимостей были определены законы изменения всех остальных характеристик механической системы, в том числе и реакции связей.


Использованная литература

1. Методические указания к курсовой работе по разделу "Динамика", "Исследование колебаний механической системы с одной степенью свободы". Разработали: профессор Нечаев Л.М., доцент Усманов М.А. Тула 1998.

2. Яблонский А.А. "Курс теоретической механики." Том 2 - М.: Высшая школа

1984-424 с.

3. Тарг СМ. "Краткий курс теоретической механики" — М.: Наука, 1988 — 482 с.22


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно