Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Численные методы при решении задач

Тип Реферат
Предмет Информатика
Просмотров
873
Размер файла
64 б
Поделиться

Ознакомительный фрагмент работы:

Численные методы при решении задач

Курсовая работа по информатике

Тема: «Численные методы при решении задач»

Автор: студент группы ПС-146

Нечаев Л. В.

Проверил: Алёшин Е. А.

Оглавление

Оглавление. 2

Программы и описания. 3

Программа для решения задачи 17. 3

Условие задачи 17.3

Решение задачи по методу Адамса. 3

Блок-схема функции main из программы 17.c. 4

Блок-схема функции Adams из программы 17.c. 5

Листинг программы 17.c. 6

Результат решения задачи 17 на ЭВМ.. 9

Вывод:9

Программа для решения задачи 30.10

Условие задачи 30.10

Решение задачи по методу наименьших квадратов. 10

Блок-схема функции main из программы 30.c. 11

Блок-схема функции MMinor из программы 30.c. 11

Блок-схема функции MatrixMultiply из программы 30.c. 12

Блок-схема функции Determinant из программы 30.c. 12

Листинг программы 30.c. 12

Результат решения задачи 30 на ЭВМ.. 17

Вывод:17


Программы и описания

Программа для решения задачи 17

Условие задачи 17.

Разработать функцию численного интегрирования системы дифференциальных уравнений методом Адамса. Прототип функции:

void Adams (

void f(double *y, double *ys, double t),

double *y,

int n,

double tn,

double tk,

int m,

double eps);

где:

f – Функция вычисления правых частей системы дифференциальных уравнений:

y – Массив размера nзначений зависимых переменных;

ys – Массив размера nзначений зависимых производных;

n – Порядок системы дифференциальных уравнений;

t – Независимая переменная;

tn – Начальное значение интервала интегрирования;

tk – Конечное значение интервала интегрирования;

m – Начальное число разбиений отрезка интегрирования [tn;tk]

eps – относительная погрешность интегрирования. Вычисления прекращаются, когда , где – значение i-й компоненты вектора зависимых переменных при t=tkдля количества разбиений отрезка интегрирования m.

Начальные шаги делаются по методу Рунге-Кутта.

Применить эту функцию для интегрирования дифференциального уравнения 3-его порядка y(3)+2y’’+3y’+y=5+x2в интервале xÎ[0;2] с шагом x=0, и начальными условиями x = 0; y(0) = 1; y’(0) = 0.1; y’’(0) = 0.

Решение задачи по методу Адамса

Для запуска экстраполяционного метода Адамса требуется 4 начальных значения функции. Одно значение уже задано, а остальные получаются по методу Рунге-Кутта 4 порядка. После вычисления значения в конце отрезка происходит вычисление относительной погрешности (из текущих и ранее полученных с шагом h значений функции) и сравнение её с заданным значением. Если полученная погрешность меньше, чем заданная, то считается, что задача выполнена и происходит возврат в вызывающую программу с полученным значением функции. Если же нет – то уменьшается в 2 раза шаг и весь процесс, начиная с метода Рунге-Кутта, повторяется вновь (для вычисления новых значений функции). Так продолжается до тех пор, пока полученное значение погрешности не станет меньше чем заданное.

Для работы программы необходима функция вычисления правых частей системы дифференциальных уравнений. Это функция func (double *y, double *ys, doublex). Т. к. в задаче требуется решить уравнение y(3)+2y’’+3y’+y=5+x2, составляем систему дифференциальных уравнений первого порядка. Выглядит она так:

При каждом вычислении левых частей этой системы происходит дифференцирование y, y’ иy’’, т. е. вычисление соответственно новых значений y’, y’’, y’’’.

Ну, а если переложить это всё в программу на Си, то получится функция func(смотри листинг 17 задачи).

Блок-схема функции mainиз программы 17.c

Блок-схема функции Adamsиз программы 17.c

Листинг программы 17.c

// Задача 17. Численное интегрирование системы дифференциальных уравнений

// методом Адамса. Программа рассчитана на компиляцию в Micro$oftC 6.00

// или Borland C 3.1+

// (C) 2004 REPNZ. All rights reserved. Release date is 2.04.2004

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void func (double *y, double *ys, double t)

{ // функция вычисления правых частей уравнений

ys[0] = y[1]; // ys[1]-первая производная; ys[2]-вторая и т.д.

ys[1] = y[2]; // t-независимый аргумент

ys[2] = 5 + t * t - y[0] - 3. * y[1] - 2. * y[2];

}

void Adams (

void f (double *y, double *ys, double x),

// Функция вычиления правых частей системы

double *y, // Массив размера n значений зависимых переменных

int n, // Массив размера n значений производных

double tn, // Начало интервала интегрирования

double tk, // Конец интервала интегрирования

int m, // Начальное число разбиений отрезка интегрирования

double eps) // Относительная погрешность интегрирования

{

double *k1, *k2, *k3, *k4; // Для метода Рунге-Кутта

double *q0, *q1, *q2, *q3; // Значение производных Для метода Адамса

double *ya; // Временный массив

double *y0, *y1, *y2, *y3; // Значения функции для метода Адамса

double h; // Шаг интегрирования

doublexi; // Текущее значение независимой переменной

double eps2; // Для оценки погрешности

double dq2, dq1, dq0, d2q1, d2q0, d3q0; // приращения

int flag = 0; // 0, пока идёт первый просчёт

int i, j; // Индексы

if (m < 4) m = 4; // Минимум 4 отрезка

if (tn >= tk)

{ printf ("nНеправильные аргументыn");

abort (); // Неправильные аргументы

}

// Выделяем память для массивов с переменными

if ((k1 = malloc ((4 + 4 + 4 + 1) * n * sizeof (double))) == 0)

{ printf ("nОшибка распределения памятиn");

abort (); // Прервать, если не удалось

}

// Распределяем память между массивами:

// Для метода Рунге-Кутта 4 порядка

k2 = k1 + n; k3 = k2 + n; k4 = k3 + n;

// 4 пердыдущих значения функции

y0 = k4 + n; y1 = y0 + n; y2 = y1 + n; y3 = y2 + n;

// Для временного массива сбора данных

ya = y3 + n;

// Для метода Адамса

q0 = ya + n; q1 = q0 + n; q2 = q1 + n; q3 = q2 + n;

h = (tk - tn) / m; // Шаг

eps = fabs (eps); // Абсолютное значение погрешности

start: // Отсюда начинаются вычисления

xi = tn; // Начало промежутка

// Вычисляем значения функции y0...y3, т.е. y[i-3] ... y[0]

// Первое значение системы уравнений уже дано: y ...

///////////////////////////////////////////////////////////////////////

// - Метод Рунге-Кутта 4 порядка - //

///////////////////////////////////////////////////////////////////////

for (j = 0; j < n; j++) y0[j] = y[j]; // Копируем его в y0

f (y0, q0, xi); // Заполняем q0, основываясь на значениях из y0

for (j = 0; j < n; j++) q0[j] *= h; // Делаем q0

xi += h; // Следующий шаг

// ... а остальные 3 добываем с помощью метода Рунге-Кутта 4 порядка.

for (i = 0; i < 3; i++) // i - КАКОЕ ЗНАЧЕНИЕ УЖЕ ЕСТЬ

{ // А ВЫЧИСЛЯЕМ ЗНАЧЕНИЯ Y[i+1]!!!!

// Сначала нужны коэффициенты k1

// Элемент y[i, j] = y0 + (i * n) + j = y0[i * n + j]

f (&y0[i * n], k1, xi); // Вычислим f(xi, yi) = k1 / h

// И для каждого дифференциального уравнения системы проделываем

// операции вычисления k1, а также подготовки в ya аргумента для

// вычисления k2

for (j = 0; j < n; j++)

{

k1[j] *= h; // Вычислим наконец-то k1

ya[j] = y0[i*n+j] + k1[j] / 2.;

// И один из аргументов для функции

} // вычисления k2

f (ya, k2, xi + (h / 2.)); // Вычислим f(xi,yi) = k2 / h

for (j = 0; j < n; j++)

{ // Вычислим наконец-то k2

k2[j] *= h;

ya[j] = y0[i*n+j] + k2[j] / 2.; // И один из аргументов для функции

} // вычисления k3

f (ya, k3, xi + h / 2.); // Вычислим f(xi,yi) = k3 / h

for (j = 0; j < n; j++)

{

k3[j] *= h; // Вычислим наконец-то k3

ya[j] = y0[i*n+j] + k3[j]; // И один из аргументов для функции

} // вычисления k4

f (ya, k4, xi + h); // Вычислим f(xi,yi) = k4 / h

for (j = 0; j < n; j++) k4[j] *= h; // Вычислим наконец-то k4

// Надо вычислить приращение каждой функции из n

for (j = 0; j < n; j++) // Вычисляем следующее значение

// функции

// Y[i+1] = Yi + ...

y0[(i+1)*n+j] = y0[i*n+j] + (k1[j] + 2. * k2[j] + 2 * k3[j] + k4[j]) / 6.;

// И новое значение q[i+1]

f (&y0[(i+1)*n], &q0[(i+1)*n], xi); // qi = f (xi, yi);

for (j = 0; j < n; j++) q0[((i+1)*n)+j] *= h;

xi += h; // Следующий шаг }

///////////////////////////////////////////////////////////////////////

// - Метод Адамса - //

///////////////////////////////////////////////////////////////////////

// Итак, вычислены 4 первых значения. Этого достаточно для начала метода

// Адамса для шага h.

// B y0...y3 лежат 4 значения функций (_НЕ_ПРОИЗВОДНЫХ!!!).

// A в q0...q3 лежат значения _производных_ этих функций, умноженных на h

// q0..q3, а также y0..y3 представляют собой очереди с 4 элементами

again: // Вычисляем новое значение функции Yi (Это Y[i+1])

for (j = 0; j < n; j++)

{ // Все приращения

dq2 = q3[j] - q2[j]; dq1 = q2[j] - q1[j]; dq0 = q1[j] - q0[j];

d2q1 = dq2 - dq1; d2q0 = dq1 - dq0;

d3q0 = d2q1 - d2q0;

// новое значение функции (в ya пока что)

ya[j] = y3[j] + (q3[j] + (dq2 / 2.) + (5. * d2q1 / 12.) + (3. * d3q0 / 8.));

// Сдвигаем все массивы на 1 вперёд и добавляем в очередь новое

// значение функции

y0[j] = y1[j]; y1[j] = y2[j]; y2[j] = y3[j]; y3[j] = ya[j];

// Просто сдвигаем q, ничего пока что не добавляя

q0[j] = q1[j]; q1[j] = q2[j]; q2[j] = q3[j];

}

// В очередь в качестве q3 ложим новое значение

f (y3, q3, xi); // q3 = f (xi, y3);

for (j = 0; j < n; j++) q3[j] *= h; // Вычислить q3

// Очередное значение функции вычислено. Следующиий шаг

xi += h;

// Продолжить интегрирование?

if (xi < tk) goto again; // Да.

// Если первый раз здесь, то просчитать ещё раз с шагом h/2

if (flag == 0)

flag = 1; // Сравнивать уже будет с чем

else

{

// Не первый раз - оценить погрешность

// Сейчас в y3 - значение только что вычисленной функции ,

// а в y2 - занчение функции, вычисленной с шагом h * 2

// по отношению к текущему

for (j = 0; j < n; j++)

{ eps2 = fabs (((y3[j] - y2[j]) / y2[j]));

if (eps2 > eps) break; // Если погрешность слишком великА

}

if (j == n) // Если всё ОК

{ // Копируем результат

for (j = 0; j < n; j++) y[j] = y3[j];

free (k1); // Освобождаем память

return; // Возвращаемся в main

}

}

// По каким-то причинам выхода из функции не произошло -

// тогда уменьшаем шаг в 2 раза и повторяем

// всё, начиная с метода Рунге-Кутта

h /= 2.; // Уменьшить шаг

goto start; // Повторить расчёт сначала, с новыми параметрами

}

int main ()

{

double y[3], xs, xe;

int i;

y[0] = 1.; y[1] = 0.1; y[2] = 0.; // Начальные условия

xs = .0; xe = .1; // Начало интегрирования

printf ("x = %5.3lg, y(%4.2lg) = %10.3lgn", xs, xs, y[0]);

for (i = 0; i < 20; i++)

{

Adams (func, y, 3, xs, xe, 10, 1.e-3);

xs += 0.1; xe += 0.1;

printf ("x = %5.3lg, y(%4.2lg) = %10.3lgn", xs, xs, y[0]);

}

return 0;

}

Результат решения задачи 17 на ЭВМ

Для работы программу необходимо скомпилировать в модели не ниже SMALL. Использовался компилятор Micro$oftC 6.00 из одноимённого пакета. После запуска программа выводит следующее:

Программа численного интегрирования системы дифференциальных

уравнений экстраполяционным методом Адамса

Разработчик: студент гр. ПС-146

Нечаев Леонид Владимирович

17.03.2004

Дифференциальное уравнение имеет вид y''' + 2y'' + 3y' + y = x^2 + 5

Итак, зависимость y[x]:

x = 0, y( 0) = 1

x = 0.1, y(0.1) = 1.01

x = 0.2, y(0.2) = 1.02

x = 0.3, y(0.3) = 1.04

x = 0.4, y(0.4) = 1.07

x = 0.5, y(0.5) = 1.11

x = 0.6, y(0.6) = 1.16

x = 0.7, y(0.7) = 1.22

x = 0.8, y(0.8) = 1.28

x = 0.9, y(0.9) = 1.37

x = 1, y( 1) = 1.46

x = 1.1, y(1.1) = 1.56

x = 1.2, y(1.2) = 1.67

x = 1.3, y(1.3) = 1.79

x = 1.4, y(1.4) = 1.92

x = 1.5, y(1.5) = 2.06

x = 1.6, y(1.6) = 2.21

x = 1.7, y(1.7) = 2.36

x = 1.8, y(1.8) = 2.52

x = 1.9, y(1.9) = 2.69

x = 2, y( 2) = 2.86

Вывод:

Проверяем решение в программе Mathematica 4.2. Результаты, полученные с точностью до 2 знаков после запятой не отличаются от полученных. Задача решена верно.

Программа для решения задачи 30.

Условие задачи 30.

Разработать программу аппроксимации функции методом наименьших квадратов для модели по таблице результатов эксперимента:

X1X2Y
110
-1-1-2
22-2
3-229
-2454

Решение задачи по методу наименьших квадратов

Рассчитываемая модель линейна относительно своих коэффициентов ai. Задана матрицы и , а также функция для получения матрицы F. F– Специальная матрица, которая вычисляется по алгоритму, приведённому ниже. Функция представляет собой мою собственную разработку, но вполне возможно её вводить вручную. Алгоритм составления матрицы F(учитывая разложение ):

, где - функции из модели y, а .- n-й элемент матрицы .

Исходя из этих формул строится функция f (смотри листинг программы 30.c).

Далее, по формуле находится матрица с коэффициентами aiи выводится на экран.

Блок-схема функции mainиз программы 30.c

Нет

Блок-схема функции MMinorиз программы 30.c

Блок-схема функции MatrixMultiplyиз программы 30.c

Блок-схема функции Determinantиз программы 30.c

Листинг программы 30.c

// Задача 30. Аппроксимация функции методом наименьших квадратов

// (C) 2004 REPNZ

// Включаемые файлы

#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include <stdlib.h>

// -------------- Описание начальных значений ------------------

// Дано (Размеры матриц - (1 х высота):

// xm - это матрицы-столбецы независимых переменных

// xm = (x1, x2, ... xN)T высотой xr

// Вектор наблюдений. ym - его матрица:

// ym = (y1, y2, ..., yM)T высотой yr

// А также описания функций при коэффициентах a1, a2, ..., aK

// 1. Матрицы с элементами типа double

// - Количество элементов в столбцевых маритцах xm и ym

#define xr 2

#define yr 5

// - Данные значения х

static double xm1[xr] = {1, 1};

static double xm2[xr] = {-1, -1};

static double xm3[xr] = {2, 2};

static double xm4[xr] = {3, -2};

static double xm5[xr] = {-2, 4};

// - Массив указателей на эти значения

static double *xmp[yr] = {xm1, xm2, xm3, xm4, xm5};

// - Матрица со значениями функции

static double ym[yr] = {0, -2, -2, 29, 54};

// 2. Функции из модели

// - сколько их

#define n 3

// И собственно сами функции, записываются как тело Си-функции

double f(double xm[xr], int path)

// - какие именно (n штук путей, выбирается параметром path)

{

switch (path)

{

// Функция 1

case 1:

return xm[0]; // x1

// Функция 2

case 2:

return xm[1]*xm[1]; // x2^2

// Функция 3

case 3:

return xm[0]*xm[1]; // x1*x2

}

printf ("nНеправильная функцияn");

abort ();

}

// Ну и модель соответственно получилась: y = a1 * x1 + a2 * x2^2 + a3 * x1 * x2

char txtmodel[] = "y = a1x1 + a2x2^2 + a3x1x2";

// Короче, n = K, xr = N, yr = M (!) ;-)

///////////////////////////////////////////////////////////////////////////////

// =-=-=-=-=-=-=-=-=-=-=-=-=-= Функции и подпрограммы =-=-=-=-=-=-=-=-=-=-=-=-=

///////////////////////////////////////////////////////////////////////////////

// Печать матрицы m. Размеры (x * y)

void mprint (double *m, int x, int y)

{

int i, j; // Индексы для прохода

for (j = 0; j < y; j++) // По строкам

{

for (i = 0; i < x; i++) // По элементам строки

{ // Элемент

printf ("%8.4lg ", *(m + (j * x + i)));

}

printf ("n"); // CR/LF

}

}

///////////////////////////////////////////////////////////////////////////////

// Перемножение матриц m1 (размер - rows1 * cols1) и m2 (размер - cols1 * cols2)

// Результат помещается в result

void MatrixMultiply (double *m1, int rows1, int cols1, double *m2, int cols2, double *result)

{

int i, j, k;

// Получится матрица высотой rows1 и длиной cols2

for (j = 0; j < rows1; j++) // Проход по высоте

{

for (i = 0; i < cols2; i++) // Проход по длине

{

// Очистка элемента

*(result + (cols2 * j + i)) = 0;

for (k = 0; k < cols1; k++) // Проход по элементам

// строки первой матрицы

// Вычисление очередного элемента результата

*(result + (cols2 * j + i)) +=

*(m1 + (cols1 * j + k)) * (*(m2 + (cols2 * k + i)));

}

}

}

///////////////////////////////////////////////////////////////////////////////

// Вычисляет минор матрицы m, полученный вычёркиванием элемента (xel; yel)

// и ложит его в res

void MMinor (double *m, double *res, int siz, int xel, int yel)

{

int i, j, ki = 0, kj = 0; // Исходное состояние

for (j = 0; j < (siz - 1); j++) // Проходим по строкам матрицы res

{

if (j == yel) kj = 1; // Пропустить текущую строку

for (i = 0; i < (siz - 1); i++)// Проходим по столбцам матрицы res

{

if (i == xel) ki = 1; // Пропустить текущий столбец

*(res + j * (siz - 1) + i) = *(m + (j+kj) * siz + (i+ki));

}

ki = 0; // Для следующей строчки (yel строку уже пропустили)

}

}

///////////////////////////////////////////////////////////////////////////////

// Вычисление определителя матрицы m размером (dim * dim)

// (Рекурсивная функция)

double Determinant (double *m, int dim)

{

// Все переменные - ОБЯЗАТЕЛЬНО ЛОКАЛЬНЫЕ!!!

doubled = 0, k = 1; // Определитель и флажок

int ki, kj, di, dj, i; // Коэффициенты, индексы, смещения

double *mm; // Новая матрица с вычеркнутой строкой и столбцом

if (dim < 1) { printf ("nНеправильные аргументы"); abort (); }

if (dim == 1) return *m; // Если матрица 1х1

// Выделяем память для минора

if ((mm = malloc ((dim - 1) * (dim - 1) * sizeof (double))) == 0)

{ printf ("nОшибка распределения памятиn"); abort (); }

// Если матрица 2х2

if (dim == 2) d = ((*m) * (*(m + 3)) - (*(m + 2) * (*(m + 1))));

else // Размер больше чем 2

// Раскладываем матрицу по нулевой строке

for (i = 0; i < dim; i++)

{

MMinor (m, mm, dim, i, 0); // Вычеркнем столбец и

// строку в матрицк

d += k * (*(m + i)) * Determinant (mm, (dim - 1));

k = 0 - k;

}

free (mm); // Освободить память под минор

returnd; // Вернуть значение определителя

}

///////////////////////////////////////////////////////////////////////////////

// Основная часть програмыы

int main (void)

{

// Аппроксимация функции для модели y

double *F; // Специальная матрица F n*y

double *TF; // Транспонированная F y*n

double *REV; // Обратная матрица n*n

double *TMP; // Временная матрица n*n

double *AC2; // Алгебраические дополнения (n-1)*(n-1)

double dt; // Значение определителя матрицы

double flag; // Флажок для обратной матрицы

int i, j; // Индексы

// Представим программу пользователю :)

printf ("nПрограмма аппроксимации функции методом наименьших квадратов для"

" моделиn %s"

"nпо заданной таблице эксперимента."

"nn Разработчик: студент группы ПС-146"

"n Нечаев Леонид Владимирович"

"n 25.02.2004"

, txtmodel);

printf ("nИзвестны результаты наблюдений:"

"n x1 x2 y");

for (i = 0; i < yr; i++)

printf ("n%10.4lg%8.4lg%8.4lg", *(xmp[i]), *(xmp[i] + 1), ym[i]);

printf ("nНачинаем аппроксимацию...n");

// Требуется посчитать am. Так:

// am - это матрица-столбец искомых коэффициентов. Представляет из себя

// am = (a1, a2, ..., aK)T высотой n, а считается так:

// am = Inverse[Transpose[F].F].Transpose[F].ym, где

// F - мартица, составленная специальным образом (смотри ниже):

// Выделяем памяти сразу на все матрицы - F, TF, REV, TMP, AC2

#define memneed (((n * yr) + (yr * n) + (n * n) + (n * n) + ((n-1) * (n-1))) * eof (double))

if ((F = malloc (memneed)) == 0)

{

printf ("nОшибка распределения памяти. Замените компьютер");

abort(); // Если не удалось выделить для неё память

}

TF = F + (n * yr);

REV = TF + (yr * n);

TMP = REV + (n * n);

AC2 = TMP + (n * n);

// Заполнение значениями матрицы F

for (j = 0; j < yr; j++) // Цикл по строкам F

{

for (i = 0; i < n; i++) // И по столбцам F

{

// Заполняем j-й строка значениями функций fi

*(F + (j * n + i)) = f (xmp[j], (i + 1));

}

}

// Матрица F готова. Надо вычислить по формуле:

// am = Inverse[Transpose[F].F].Transpose[F].ym значение

// коэффициентов a1, a2, a3, ...

// Транспонируем F

for (j = 0; j < n; j++) // Цикл по строкам TF

{

for (i = 0; i < yr; i++) // И по её столбцам

{

*(TF + (j * yr + i)) = *(F + (i * n + j));

}

}

// Считаем TMP = TF * F

MatrixMultiply (TF, n, yr, F, n, TMP);

// Далее считаем оперделитель от TMP

if ((dt = Determinant (TMP, n)) == 0)

{

printf ("nТак, как определитель матрицы TF*F равен 0,n"

"невозможно посчитать обратную к ним матрицуn");

free (F); abort();

}

// Составляем обратную матрицу.

for (j = 0; j < n; j++)

{

for (i = 0; i < n; i++)

{

// Берём Минор элемента ij

MMinor (TMP, AC2, n, i, j);

// Знак элемента

flag = ((i + j) % 2 == 0) ? 1. : -1.;

// Сразу транспонирование

*(REV + (i * n) + j) = flag * Determinant (AC2, (n - 1)) / dt;

}

}

// Умножаем обратную матрицу на транспонированную к F

// т.е. Inverse (TF*F) * TF

// Такая матрица будет размера yr*n, поэтому вполне хватит памяти для F

MatrixMultiply (REV, n, n, TF, yr, F);

// И, наконец, всё это умножаем на матрицу Y и получаем искомые

// коэффициенты a1, a2, ... aN

// Для такой матрицы (размером 1*n) вполне хватит памяти под REV

MatrixMultiply (F, n, yr, ym, 1, REV);

// Всё, печатаем ответ

printf ("nВычисления успешны, получен следующие коэффициенты:");

for (i = 0; i < n; i++)

printf ("na%d = %lg", i, *(REV + i));

// Освободить память

free (F);

printf ("nНажмите any key");

getch ();

printf ("nDone.n");

return 0;

}

Результат решения задачи 30 на ЭВМ

После запуска программа сразу же начинает расчёт коэффициентов. На экран выводится следующее:

Программа аппроксимации функции методом наименьших квадратов для модели

y = a1x1 + a2x2^2 + a3x1x2

по заданной таблице эксперимента.

Разработчик: студент группы ПС-146

Нечаев Леонид Владимирович

25.02.2004

Известны результаты наблюдений:

x1 x2 y

1 1 0

-1 -1 -2

2 2 -2

3 -2 29

-2 4 54

Начинаем аппроксимацию...

Вычисления успешны, получены следующие коэффициенты:

a0 = 1

a1 = 2

a2 = -3

Нажмите any key

Done.

Результат верен, так как при подстановке переменных в модель получается верное равенство:

0 = 1 * 1 + 2 * 1 – 3 * 1 * 1

-2 = 1 * (-1) + 2 * (-1) – 3 * (-1) * (-1)

-2 = 1 * 2 + 2 * 2 – 3 * 2 * 2

29 = 1 * 3 + 2 * (-2) – 3 * 3 * (-2)

54 = 1 * (-2) + 2 * 4 – 3 * (-2) * 4

Вывод:

Задача решена верно.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно