Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Кривые разгона объекта управления

Тип Реферат
Предмет Математика
Просмотров
964
Размер файла
159 б
Поделиться

Ознакомительный фрагмент работы:

Кривые разгона объекта управления

Цель работы

1. Изучить методику экспериментального определения кривых разгона объекта управления и определить кривые разгона по каналам регулирования и возмущения для напорного бака.

2. Оценить по кривым разгона важнейшие динамические характеристики объекта управления: чистое транспортное запаздывание, самовыравнивание, емкость, инерционность.

3. Провести математическое описание динамики объекта управления по двум каналам (по каналу возмущения и каналу регулирования поочерёдно) линейным дифференциальным уравнением первого порядка. Определить коэффициенты дифференциального уравнения первого порядка и соответствующей ему передаточной функции первого порядка, вывести уравнение для построения расчётной кривой разгона.

4. Провести математическое описание динамики объекта управления по каналам возмущения и регулирования дифференциальным уравнением второго порядка. Определить коэффициенты дифференциального уравнения второго порядка и соответствующей ему передаточной функции второго порядка, вывести уравнение для построения расчётной кривой разгона.

Изучение кривой разгона первого порядка по каналу регулирования

1. Изучаемый объект: Напорный бак с подогревом.

2. Раздел: Практика Хвоз=20%, Хрег=57%

3. Задаем ступенчатое изменение Хрег=67% (+10%), ждем, когда объект стабилизируется (Хвых(t)=const).

4. От момента задания возмущения до момента стабилизации по выходному каналу мы наблюдаем кривую разгона.

5. Останавливаем процесс нажатием клавиши “S”, далее “F7”. Задаем оси новой системы координат.

6. Далее на экране отображается выделенный участок, на котором необходимо выявить точку перегиба, обозначить ее и установить касательную.

7. В результате видим на экране расчётную модель кривой разгона первого порядка.

8. Снимаем показания. Соглашаемся с результатом расчетной модели, возвращаемся к окну процесса. Получаем величину k=1,9.

Кривая разгона с обозначениями параметров кривой

Описание объекта управления в динамике можно сделать с помощью дифференциального уравнения второго порядка с запаздыванием следующего вида:

, при (1)

Где k - коэффициент усиления (передачи) рассматриваемого канала объекта

- время чистого транспортного запаздывания, определение которого также уже было рассмотрено. Коэффициент усиления можно выразить:


(2)

Рассмотрим точку перегиба. Как известно из математики, в точке перегиба вторая производная равна 0, т.е.

(3)

(4) –

это следует из того что тангенс угла найдётся из треугольника, как отношение противолежащего катета хвых уст к прилежащему, равному Т

Так же справедливо равенство уравнения разгона:

(5)

или (6)

Причём . Тогда из этого уравнения нетрудно получить формулу для коэффициента a1:

(7)

Перейдём к определению коэффициента а2. Для этого предварительно проинтегрируем исходное дифференциальное уравнение второго порядка (1), отбросив в нём на время уже определённое время чистого транспортного запаздывания. Получим:

(8)

Перепишем это уравнения для точки перегиба с координатами (tп, xвых(tп)):

. (9)

В уравнении (9):

(10)

а интеграл выражает площадь под кривой разгона до точки перегиба, поэтому обозначим его так:

. (11)

С учётом выражений (10) и (11) уравнение (9) примет вид:

(12)

Из этого уравнения и выведем формулу для определения последнего неизвестного коэффициента а2, получим:


. (13)

После определения всех коэффициентов дифференциального уравнения (1), перейдём к соответствующей ему передаточной функции, для чего уравнение (1) предварительно преобразуем по Лапласу, а затем найдём отношение изображения выходной величины объекта к входной (при нулевых начальных условиях), получим:

. (14)

Помня, что , а изображение входного ступенчатого сигнала имеет вид нетрудно получит изображение выходной величины:

. (15)

Далее, пользуясь известными из математики методами (например, разлагая правую часть выражения (15) на простые дроби при временном отбрасывании запаздывания, а затем учёте его в полученном выражении путём формальной замены ), получим уравнение расчётной кривой разгона апериодического объекта второго порядка с запаздыванием:

, при . (16)


По уравнению (16) и проводится проверка точности совпадения расчётной кривой разгона с экспериментальной, т.е. проверка адекватности математической модели объекта. В уравнении (16) p1 и p2 – корни характеристического уравнения объекта по рассматриваемому каналу, получаемого приравниванием знаменателя передаточной функции (14) к нулю, т.е. корни уравнения вида:

. (17)

Кривая разгона по регулированию

= 18с, T=83,61с, =1,9, =0,53.

Имея данные, полученные выше, можем изобразить передаточную функцию:

Подставив полученные данные в формулу при , получаем расчётное значение xвых(t).

t

Хвых(t)Практ

Хвых(t)Расчет

0

0

0

12

0

0

24

1,5

1,18

36

3,5

3,74

48

5,5

5,94

60

7,5

7,85

72

9

9,50

84

10,5

10,93

96

12

12,16

108

13

13,22

120

14

14,14

132

14,5

14,94

144

15,5

15,63

156

16

16,22

168

16,5

16,73

*Значение при t=0 рассчитать не удается т.к. не выполняется условие

Графическое отображение зависимости выходных характристик от времени

Кривая разгона по возмущению

Задаем ступенчатое возмущение Хаозм=25% (-5%), ждем, когда объект стабилизируется (Хвых(t)=const).

= 26,26с, Т=95,92 с, =4,4, =0,23.


Имея данные, полученные выше, можем изобразить передаточную функцию:

Подставив полученные данные в формулу при , получаем расчётное значение xвых(t).

t

Хвых(t)Практ

Хвых(t)Расчет

0

0

30

2

1,49

60

6,5

6,81

90

11

10,76

120

14

13,68

150

16

15,84

180

17,5

17,44

210

19

18,62

240

20

19,50

270

20,5

20,15

300

21

20,63

330

21,5

20,98

360

21,5

21,25

390

22

21,44

420

22

21,59

*Значение при t=0 рассчитать не удается т.к. не выполняется условие


Графическое отображение зависимости выходных характристик от времени:

Кривая разгона по регулированию второго порядка

Задаем ступенчатое регулирование Хрег=67% (+10%), ждем, когда объект стабилизируется (Хвых(t)=const).

Чистое запаздывание τ=21,15с, постоянная времени объекта Т=100,94с,

=1,9, =0,53.

Имея данные полученные выше можем изобразить передаточную функцию:

Подставим полученные данные в формулу


при условии что t≥τ. Где p1 и p2 корни уравнения

t

Хвых(t)Практ

Хвых(t)Расчет

0

0

0*

12

0

0*

24

1,5

1,32

36

3,5

3,94

48

5,5

6,11

60

7,5

7,97

72

9

9,59

84

10,5

10,98

96

12

12,19

108

13

13,24

120

14

14,15

132

14,5

14,93

144

15,5

15,61

156

16

16,20

168

16,5

16,71

*Значение при t=0 рассчитать не удается т.к. не выполняется условие

Графическое отображение выходных характеристик:

Кривая разгона по возмущению второго порядка

Задаем ступенчатое возмущение Хаозм=25% (-5%), ждем, когда объект стабилизируется (Хвых(t)=const).

Чистое запаздывание τ=26,68с, постоянная времени объекта Т=115,23с,

=4,4, =0,23.

Имея данные полученные выше можем изобразить передаточную функцию:

Подставим полученные данные в формулу

при условии что t≥τ. Где p1 и p2 корни уравнения

t

Хвых(t)Практ

Хвых(t)Расчет

0

0

0

30

2

2,08

60

6,5

7,29

90

11

11,11

120

14

13,93

150

16

16,02

180

17,5

17,57

210

19

18,72

240

20

19,57

270

20,5

20,20

300

21

20,67

330

21,5

21,01

360

21,5

21,27

390

22

21,46

420

22

21,60

*Значение при t=0 рассчитать не удается т.к. не выполняется условие

Графическое отображение выходных характеристик:

Вывод

В результате проделанной работы мы приобрели навыки определения и анализа (точка перегиба, касательная, площадь под кривой до точки перегиба) кривой разгона при задании ступенчатого сигнала по каналам возмущения и регулирования. Были изображены расчетные кривые разгона первого и второго порядков, выведены передаточные функции из дифференциальных уравнений первого и второго порядка, определены необходимые коэффициенты.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач по предмету «Математика»

Решение задач, Математика

Срок сдачи к 29 дек.

1 минуту назад

Отчет с выполнением заданий

Решение задач, Отчет, бух учет

Срок сдачи к 25 дек.

4 минуты назад

Расчет параметров участка электроэнергетической системы

Решение задач, Электрические системы, электроника, электротехника

Срок сдачи к 8 янв.

4 минуты назад
4 минуты назад

Сделать курсач по методике

Курсовая, Электротехника

Срок сдачи к 26 дек.

5 минут назад

Психология безопасности труда

Реферат, Русский язык и культура речи

Срок сдачи к 29 дек.

7 минут назад

Сделать реферат и презентацию

Презентация, Биомеханика

Срок сдачи к 25 дек.

7 минут назад

написать курсовую работу по уголовному праву

Курсовая, Уголовное право

Срок сдачи к 25 дек.

7 минут назад

Начертить 12 чертежей

Чертеж, Начертательная геометрия

Срок сдачи к 9 янв.

8 минут назад

Феномен успеха и успешность в профессиональном развитии

Реферат, Психология

Срок сдачи к 28 дек.

9 минут назад

В файле прикреплен пример выполнения задания

Контрольная, Криминология

Срок сдачи к 27 дек.

9 минут назад

9-11 страниц. правовые основы военной реформы в ссср в 20-е гг

Реферат, История государства и права России

Срок сдачи к 26 дек.

10 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, Английский язык

Срок сдачи к 26 дек.

10 минут назад

Составить Проект массового взрыва

Контрольная, Взрывное дело, горное дело

Срок сдачи к 8 янв.

12 минут назад

Термодинамика

Решение задач, Термодинамика

Срок сдачи к 26 дек.

12 минут назад

Нужен реферат, объем 15-20 страниц

Реферат, Безопасность в техносфере

Срок сдачи к 5 янв.

12 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, История

Срок сдачи к 26 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно