Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Сфера S8319

Тип Реферат
Предмет Математика
Просмотров
1402
Размер файла
77 б
Поделиться

Ознакомительный фрагмент работы:

Сфера S8319

СФЕРА

СОДЕРЖАНИЕ

ВВЕДЕНИЕ................................................................................ 2

МНОЖЕСТВО И РАССТОЯНИЕ В НЁМ..................... 3

ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА В ......... 4

СФЕРА .................................................................................. 5

НЕКОТОРЫЕ СВОЙСТВА СФЕРЫ ............................... 5

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ............. 7

ВВЕДЕНИЕ

Многие величины, представляющие интерес, зависят не от одного, а от очень многих факторов, и если сама величина и каждый из определяющих его факторов могут быть охарактеризованы некоторым числом, то указанная зависимость сводится к тому, что упорядоченному набору чисел, каждое из которых описывает состояние соответствующего фактора, становится в соответствие значение исследуемой величины, которое она приобретает при этом состоянии определяющих величину факторов.

Например, площадь прямоугольника есть произведение длин его сторон; объём данного количества газа вычисляется по формуле

,

где – постоянная, – масса, – абсолютная температура и – давление газа. Таким образом, значение зависит от переменной упорядоченной тройки чисел или, как говорят есть функция трёх переменных .

Мы ставим себе целью научиться исследовать функции многих переменных так же, как мы научились исследовать функции одного переменного.

Как и в случае функции одного переменного, изучение функции многих числовых переменных начинается с описания их области определения.

МНОЖЕСТВО И РАССТОЯНИЕ В НЁМ.

Условимся через обозначать множество всех упорядоченных наборов , состоящих из действительных чисел .

Каждый такой набор будем обозначать одной буквой и в соответствии с удобной геометрической терминологии называть точкой множества .

Число в наборе называют -й координатой точки .

Геометрические аналогии можно продолжить и ввести на множестве расстояние между точками , по формуле

(1)

Функция

,

определяемая формулой (1), очевидно, обладает следующими свойствами:

a) ;

b) ;

c) ;

d) .

Последнее неравенство (называемое опять-таки по геометрической аналогии неравенством треугольника) есть частный случай неравенства Минковского.

Функцию, определённую на парах точек некоторого множества и обладающую свойствами a), b), c), d), называют метрикой или расстоянием в .

Множество вместе с фиксированной в нём метрикой называют метрическим пространством.

Таким образом, мы превратили в метрическое пространство, наделив метрикой, заданной соотношением (1).

Из соотношения (1) следует, что при

(2)

т. е. расстояние между точками мало в том и только в том случае, когда мало отличаются соответствующие координаты этих точек.

Из (2), как и из (1), видно, что при множество совпадает с множеством действительных чисел, расстояние между точками которого измеряется стандартным образом посредством модуля разности чисел.

ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА В

Определение 1. При множество

называется шаром с центром радиуса или также -окрестностью точки .

Определение 2. Множество называется открытым в , если для любой точки найдётся шар такой, что .

Пример 1. – открытое множество в .

Пример 2. – пустое множество – вообще не содержит точек и потому может считаться удовлетворяющим определению 2, т. е. – открытое множество в .

Пример 3. Шар – открытое множество в .

Действительно, если , т. е. , то при будет , поскольку

.

Пример 4. Множество , т. е. совокупность точек, удалённых от фиксированной точки на расстояние больше чем является открытым, что, как и в примере 3, легко проверить, используя неравенство треугольника для метрики.

Определение 3. Множество называется замкнутым в , если его дополнение в является множеством, открытым в .

Пример 5. Множество , т. е. совокупность точек, удалённых от фиксированной точки не больше чем на , является замкнутым, что следует из определения 3 и примера 4. Множество называют замкнутым шаром с центром радиуса .

СФЕРА .

Сфера – множество точек евклидова пространства , находящихся от некоторой точки (центр сферы) на постоянном расстоянии (радиус сферы), т. е.

.

Сфера – пара точек, сфера – это окружность, сферу при иногда называют гиперсферой. Объём сферы (длина при , поверхность при ) вычисляется по формуле

,

в частности,

, , , .

Уравнение сферы в декартовых прямоугольных координатах в имеет вид

(здесь , , , – координаты , соответственно), т. е. Сфера – (гипер)квадрика, или поверхность второго порядка специального вида.

Положение какой-либо точки в пространстве относительно сферы характеризуется степенью точки. Совокупность всех сфер, относительно которых данная точка имеет одинаковую степень, составляет сеть сферы. Совокупность всех сфер, относительно которых точки некоторой прямой (радикальной оси) имеют одинаковую степень (различную для различных точек), составляет пучок сферы.

НЕКОТОРЫЕ СВОЙСТВА СФЕРЫ .

С точки зрения дифференциальной геометрии, сфера – риманово пространство, имеющее постоянную (гауссову при и риманову при ) кривизну . Все геодезические линии сферы замкнуты и имеют постоянную длину – это так называемые большие окружности, т. е. пересечения с двумерных плоскостей в , проходящих через её центр. Внешнегеометрические свойства : все нормали пересекаются в одной точке, кривизна любого нормального сечения одна и та же и не зависит от точки, в которой оно рассматривается, в частности имеет постоянную среднюю кривизну, причём полная средняя кривизна сферы – наименьшая среди выпуклых поверхностей одинаковой площади, все точки сферы омбилические.

Некоторые из таких свойств, принятые за основные, послужили отправной точкой для обобщения понятия сферы. Так, например, аффинная сфера определяется тем, что все её (аффинные) нормали пересекаются в одной точке; псевдосфера – поверхность в постоянной гауссовой кривизны (но уже отрицательной); одна из интерпретаций орисферы (предельной сферы) – множество точек внутри , определяемое уравнением также второго порядка

.

На сферу дважды транзитивно действует ортогональная группа пространства (2 – транзитивность означает, что для любых двух пар точек, с равными расстояниями, существует вращение – элемент , переводящая одну пару в другую); наконец, сфера есть однородное пространство: .

С точки зрения (дифференциальной) топологии, сфера – замкнутое дифференцируемое многообразие, разделяющее на две области и являющееся их общей границей; при этом ограниченная область, гомеоморфная – это (открытый) шар, так, что сферу можно определить как его границу.

Группы гомологий сферы , :

в частности не стягивается в точку сама по себе, т. е. тождественное отображение в себя существенно.

Группы гомотетий сферы , :

Например, , при . В общем случае – для любых и , , группы не вычислены.

И здесь понятие сфера получает обобщение. Например, дикая сфера – топологическая сфера в , не ограничивающая области, гомеоморфной ; Милнора сфера (экзотическая сфера) – многообразие, гомеоморфное, но не диффеоморфное .

Топологическое пространство, гомеоморфное сфере, называется топологической сферой. Одним из основных здесь является вопрос об условиях того, что некоторое пространство является топологической сферой.

Примеры.

а) Инвариантная топологическая характеристика сферы при не известна. О случае см. Одномерное многообразие. Для того чтобы континуум был гомеоморфен сфере , необходимо и достаточно, чтобы он был локально связан, содержал хотя бы одну простую замкнутую линию и чтобы всякая лежащая на нём такая линия разбивала его на две области, имеющие эту линию своей общей границей (теорема Уайлдера).

б) Полное односвязное риманово пространство размерности кривизна которого для всех касательных двухмерных плоскостей – ограничена , т. е. гомеоморфно (теорема о сфере).

в) Односвязное замкнутое гладкое многообразие, (целые) гомологии которого совпадают с гомологиями при (при – неизвестно). Если , то оно также и гомеоморфно , при гипотеза остаётся, при диффеоморфизм не имеет места.

Совершенно аналогично определяется сфера в метрическом пространстве . Однако это множество, вообще говоря, может быть устроено достаточно сложно (или может быть пустым).

В нормированном пространстве с нормой сферой называется множество : это, по существу, произвольная, вообще говоря, бесконечномерная выпуклая (гипер)поверхность, не всегда обладающая, например, гладкостью, округлостью и т. п. полезными свойствами обычной сферы. Один из вариантов, применяющихся в топологии, – тек называемая бесконечномерная сфера – строгий индуктивный предел последовательности вложенных сфер:

другое определение: , где – бесконечномерное многообразие Штифеля. Для любого оказывается, что .

Приложения понятия сфера чрезвычайно разнообразны. Например сферы участвуют в конструкциях новых пространств или дополнительных структур на них. Так, например, проективные пространства можно интерпретировать как сферу с отождествлёнными диаметрально противоположными точками; сфера с ручками и дырами используются в теории ручек.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Буземан Г.,Геометрия геодезических. – М., 1962.

2. Зорич В. А.Математический анализ. Ч.1. – М.: Наука, Главная редакция физико-математической литературы, 1981.

3. Розенфельд Б. А., Многомерные пространства. М., 1966.

4. Розенфельд Б. А., Неевклидовы пространства. М., 1969.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
РАНХиГС
Срок был очень сжатый, но Анна справилась даже раньше. Спасибо огромное!
star star star star star
СПБГТИ
Спасибо большое Маргарите. Очень отзывчивая девушка, на все замечания реагирует молниеносно)
star star star star star
СПбУТУиЭ
Спасибо огромное! Работу нужно было сдать срочно, максимум на следующий день. Ольга выполн...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Отношение гос органов власти к физической культуре (Волгоградская...

Статья, Физическая культура

Срок сдачи к 25 дек.

1 минуту назад

Есть файл с готовой курсовой но ее нужно корректировать

Курсовая, Техническое обслуживание и ремонт автомобилей

Срок сдачи к 25 дек.

1 минуту назад

Разработать структуру цифрового продукта.

Контрольная, Менеджмент организации

Срок сдачи к 23 янв.

3 минуты назад

Нужно подправить программу исследования ВКР

Другое, Дизайн психологического исследования

Срок сдачи к 25 дек.

4 минуты назад

«Кластерный анализ: иерархические методы кластеризации и метод к-средних»

Лабораторная, Статистическое моделирование и прогнозирование, статистика

Срок сдачи к 31 дек.

7 минут назад

Необходимы выполнить задание как в примере файл оиуз ...

Контрольная, Теория организации и управление изменениями

Срок сдачи к 26 дек.

8 минут назад

тмм

Контрольная, ТММ

Срок сдачи к 28 дек.

8 минут назад

Решить задачу

Решение задач, Материаловедение

Срок сдачи к 26 дек.

9 минут назад

надо сделать только задачи, все 5 штук, титульник сама оформлю

Контрольная, Основы математической обработки информации, математика

Срок сдачи к 30 дек.

10 минут назад

Решить контрольную из 5 задач по элтеху

Контрольная, Электротехника и электроника

Срок сдачи к 26 дек.

11 минут назад

решить 8 задач

Решение задач, Философия

Срок сдачи к 31 дек.

11 минут назад

Лабораторная работа

Онлайн-помощь, Информатика

Срок сдачи к 25 дек.

11 минут назад

зеленая поветска

Контрольная, Экология

Срок сдачи к 26 дек.

11 минут назад

Написать небольшой реферат

Реферат, Биохимия

Срок сдачи к 25 дек.

11 минут назад

Написать курсовую работу

Курсовая, Геология

Срок сдачи к 31 дек.

11 минут назад

Сделать презентацию на ~10-15 слайдов и написать к ней спич

Презентация, Информационная безопасность

Срок сдачи к 25 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно