Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Некоторые понятия высшей матаматики

Тип Реферат
Предмет Математика
Просмотров
1702
Размер файла
100 б
Поделиться

Ознакомительный фрагмент работы:

Некоторые понятия высшей матаматики

Высшая математика

Слушатель – Никифоров Михаил Николаевич

Курс 1. АПМ-03. Семестр осенний. 2003 год.

Матрица – совокупность чисел, записанных в виде прямоугольной таблицы.

Минором для элемента аig называется определитель матрицы, полученный из исходной, вычеркиванием i-ой строки и g-ого столбца.

Матрицы с нулевым определителем называются вырожденными или особенными. Особенная матрица обратной не имеет. . .

Bpq согласовано с Amn, если число строк В равно числу столбцов А, т.е. p=n. Одно согласование.

1) Если один столбец или одна строка все нули, то | |=0.

2) Если в матрице имеется 2 равных столбца или 2 равных строки, то | |=0.

3) Треугольная матрица. Все элементы выше или ниже главной диагонали =0. Тогда определитель матрицы равен произведению диагональных элементов.

4) При перемене местами 2 строк или 2 столбцов определитель меняет знак.

5) Определитель матрицы, содержащей 2 пропорциональные строки или столбца равен нулю.

6) Определитель матрицы равен сумме произведений некоторой строки на соответствующие алгебраические дополнения.

Системы уравнений с матрицами

Система 1 совместная, если имеет хотя бы одно решение.

Система 1 определенная, если есть только 1 решение и неопределенная, если более 1 решения.

Ранг матрицы.

Ранг нулевой матрицы равен 0.

Ранг единичной матрицыnm равен n.

Ранг трипсидальной матрицы равен числу ненулевых строк.

При элементарных преобразованиях матрицы ранг её остается неизменным.

При добавлении к матрице строки или столбца ранг её может только увеличиться или остаться неизменным.

Лекция 5.

.

Замечание: 1) Нет решения

2) . n-число неизвестных

а) r=n – одно решение

б) r<n – бесконечное множество решений, зависящих от S=n-r параметров.

Векторная алгебра

Проекция вектора на ось:

Проекцией точки на прямую называется основание перпендикуляра, опущенного из этой точки на прямую. Проекция АВ на х это число |AB| взятое со знаком +, если угол острый и со знаком – если угол тупой.

,

.

Скалярное произведение векторов

.

Признак перпендикулярности .

Векторное произведение векторов

; ;

Объем пирамиды ;

Смешанное произведение векторов

Если - углы, которые составляет вектор а с координатными осями, то , откуда следует

Условие коллинеарности

ab=0 – перпендикулярность

- коллинеарность

abc=0 – компланарность

Аналитическая геометрия

Плоскость в пространстве

Нормаль и точка привязки однозначно определяют положение плоскости в пространстве.

-

каноническое уравнение (1)

Общее уравнение плоскости

, где ,

где А, В, С – координаты нормали, D – свободный член, x,y,z – текущий координаты.

Уравнение плоскости, проходящий через точку перпендикулярно вектору N=(A;B;C), имеет вид

Уравнение плоскости, проходящей через три заданные точки записывают в виде


Уравнение плоскости в отрезках

Нормальное уравнение плоскости , где p – расстояние от начала координат.

Нормирующий множитель

Расстояние от точки до плоскости

Угол между плоскостями

Условия параллельности и перпендикулярности ;

Уравнение пучка плоскостей:

Прямые линии в пространстве.

-уравнение прямой

- параметрическое уравнение прямой.

- каноническое уравнение прямой.

Уравнения прямой, проходящей через 2 заданные точки


Угол между 2 прямыми

Взаимное расположение 2 прямых.

1. (могут лежать и на одной прямой)

2. (могут скрещиваться)

3. . Если (3) , то скрещиваются.

Взаимное расположение прямой и плоскости

1.

2.

3. Угол между прямой и плоскостью

4.

Аналитическая геометрия на плоскости.

Прямоугольная декартова система координат на плоскости

Расстояние между 2 точками .

Если заданы точки А и В и точка С делит отрезок АВ в отношении , т.е. , то .

Уравнение прямой на плоскости

Ax+By+C=0;

Уравнение прямой в отрезках .

Уравнение прямой, проходящей через 2 заданные точки .

Уравнение прямой, проходящей через точку, под заданным углом к оси Ох ():

Расстояние от точки до прямой

1.

2.

3.

Окружность

Уравнение окружности с центром в M(a;b) радиусом R

Уравнение окружности с центром в начале координат

Эллипс

Эллипс – геометрическое место точек, для которых сумма расстояний до двух заданных точек плоскости (фокусов эллипса) есть величина постоянная, , чем расстояние между фокусами.

Обозначим M(x;y) – произвольная точка эллипса, 2с – расстояние между фокусами F1 и F2; 2а – сумма расстояний от точки М до F1 и F2 (a – большая полуось эллипса). - малая полуось эллипса. .

Тогда каноническое уравнение эллипса имеет вид .

Число называется эксцентриситетом эллипса и характеризует сплюснутость эллипса относительно осей . Если , то получается окружность. a=b.

Гипербола

Гипербола – геометрическое место точек, разность расстояний которых от двух заданных точек (фокусов) есть постоянная величина, меньшая, чем расстояние между фокусами.

Если M (x;y) – точка гиперболы; F1, F2 – фокусы, 2с – расстояние между фокусами, 2а – разность расстояний от точки М (х;y) до фокусов , где а – действительная полуось гиперболы. - мнимая полуось гиперболы.

Каноническое уравнение гиперболы .

Гипербола пересекает ось Ох в точках и , с осью Оу пересечений нет.

Гипербола имеет две асимптоты, уравнения которых .

Эксцентриситет гиперболы .

Парабола

Парабола – геометрическое место точек, равноудаленных от заданной точки F – фокуса и заданной прямой – директрисы параболы. Если ось абсцисс совпадает с перпендикуляром, опущенным из фокуса на директрису, а начало координат делит этот перпендикуляр пополам, то каноническое уравнение имеет вид .

Эксцентриситет параболы - отношение расстояния от точки параболы до директрисы к расстоянию от этой точки до фокуса.

Общее уравнение второго порядка

- общее уравнение кривой второго порядка

Параллельный перенос: .

Поворот осей:

- инварианты. - дискриминант

Если >0, то уравнение эллиптического вида

Если <0, то уравнение гиперболического типа

Если =0, то уравнение параболического типа

Выбираем угол так, чтобы B’=0, тогда

(1) (B=0)

1. . Осуществляем параллельный перенос для уничтожения членов .(**) ** подставляем в

(1)+

(2) (3)

а) >0 – эллиптический вид

A`C`>0 (одного знака)

Если F``>0, то пустое множество

Если F``=0, то одна точка (x``=0, y``=0)

Если F``<0, то получим эллипс в виде , где

б) <0 (гиперболический вид) A’C’<0 (разные знаки). Пусть A’>0

A`=, , , тогда .

Если F0=0, то , получаем пару пересекающихся прямых.

Если F0>0, то (гипербола)

Если F0<0, то (гипербола, где оси поменялись местами)

в) (параболический тип) A`C`=0

(5)

а) D`=E`=0, пусть

б)

** в (5)

, где 2р=, если p>0, то парабола .

Теория пределов

Число а называется пределом последовательности xn для любого () сколь угодно малого положительного числа найдется номер, зависящий от , начиная с которого все члены последовательности отличаются от а меньше, чем на .

Предел последовательности

Под числовой последовательностью понимают функцию , заданную на множестве натуральных чисел т.е. функцию натурального аргумента.

Число a называется пределом последовательности xn (x=1,2,…): =а, если для любого сколь угодно малого >0, существует такое число N=N(), что для всех натуральных n>N выполняется неравенство .

1) , - натуральное число. Если xn=a, то (a, a, a, a) – стационарная последовательность.

2) , где a, d – const, тогда (a, a+d, a+2d,…a+(n-1)d)

xn+1=xn+d – рекуррентная формула.

3) Числа Фибоначчи. (1,1, 2, 3, 5, 8, 13, 21,…), где x1, x2 =1 и .

(*);

- эпсилон – окрестность числа а.

1. .

2.

Основные теоремы пределах

1. О единственном пределе. Последовательность имеет не более 1 предела.

2. Предельный переход в неравенстве.

3. О трех последовательностях. О сжатой последовательности.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно