Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Переключательные функции одного и двух аргументов

Тип Реферат
Предмет Математика
Просмотров
756
Размер файла
57 б
Поделиться

Ознакомительный фрагмент работы:

Переключательные функции одного и двух аргументов

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информатики

РЕФЕРАТ

На тему:

«Переключательные функции одного и двух аргументов»

МИНСК, 2008


1.Переключательные функции одного аргумента.

Существует четыре переключательные функции одного аргумента, которые приведены в табл. 1.

Таблица 1

Переключательные функции одного аргумента

x

f(x)

01Условное обозначениеНазвание функции
f0(x)000Константа нуль
f1(x)01xПеременная x
f2(x)10Инверсия x
f3(x)111Константа единица

Функция f0(x) тождественно равна нулю. Она называется константой нуль и обозначается f0(x)=0.

Функция f1(x) повторяет значения аргумента и поэтому тождественно равна переменной x.

Функция f2(x) принимает значения, противоположные значениям аргумента: если x=0, то f2(x)=1; если x=1, то f2(x)=0. Эту функцию называют инверсией x или отрицанием x и вводят для нее специальное обозначение f2(x)= .

Функция f3(x) тождественно равна единице. Она называется константой единица и обозначается f3(x)=1.

2. Переключательные функции двух аргументов.

Существует шестнадцать различных переключательных функций двух аргументов, каждая из которых определена на четырех наборах. Эти функции представлены в табл. 2.

В число шестнадцати переключательных функций входят функции, рассмотренные в п.1:

f0(x,y) = 0 — константа нуль;

f15(x,y) = 1константа единица;

f3(x,y) = x —переменная x;

f5(x,y) = y —переменная y;

f12(x,y) = —инверсия x;

f10(x,y) = —инверсия y;

Таблица 2

Переключательные функции двух аргументов

x0011Название функцииОбозначение
y0101
f0(x,y)0000Константа нуль 0
f1(x,y)0001Произведение (конъюнкция)x∙y; xÙy;x&y
f2(x,y)0010Функция запрета по yxDy
f3(x,y)0011Переменная xx
f4(x,y)0100Функция запрета по xyDx
f5(x,y)0101Переменная yy
f6(x,y)0110Сумма по модулю 2 (логическая неравнозначность)xÅy
f7(x,y)0111Логическое сложение (дизъюнкция)x+y; xÚy
f8(x,y)1000Операция Пирса (стрелка Пирса)x¯y
f9(x,y)1001Эквивалентность (логическая равнозначность)x~y
f10(x,y)1010Инверсия y
f11(x,y)1011 Импликация от y к xy®x
f12(x,y)1100Инверсия x
f13(x,y)1101Импликация от x к yx®y
f14(x,y)1110Операция Шеффера (штрих Шеффера)x½y
f15(x,y)1111Константа единица1

Рассмотрим некоторые переключательные функции двух аргументов.

Функция f1(x,y) называется конъюнкцией, или логическим умножением. Таблица истинности этой функции совпадает с таблицей умножения двух одноразрядных двоичных чисел. Можно ввести функцию n аргументов, соответствующую произведению n одноразрядных двоичных чисел. Такая переключательная функция равна единице тогда и только тогда, когда все ее аргументы равны единице. Для конъюнкции справедливы следующие соотношения:

x× 0 = 0;

x× 1 = x;

x × x = x;

x×y =y×x;

x ×= 0.

Функция f7(x,y) называется дизъюнкцией или логическим сложением. Эта функция равна нулю только в том случае, когда все ее аргументы равны нулю. Можно ввести функцию n аргументов, соответствующую логическому сложению n одноразрядных двоичных чисел. Такая переключательная функция равна нулю тогда и только тогда, когда все ее аргументы равны нулю. Для конъюнкции справедливы следующие соотношения:

xÚ 0 = x;

xÚ 1 = 1;

x Ú x = x;

xÚy =yÚx;

x Ú= 1.

Таблица истинности функции f6(x,y) совпадает с таблицей сложения двух одноразрядных двоичных чисел по модулю два. Можно ввести функцию n аргументов, соответствующую сумме по модулю два n одноразрядных двоичных чисел. Такая переключательная функция определяется следующим условием: она равна единице, если число аргументов, равных единице, нечетно, и равна нулю, если число таких аргументов четно. Приведем некоторые соотношения для суммы по модулю два:

xÅ 0 = x;

xÅ 1 = ;

x Å x = 0;

x Å x Å x = x;

x Å y = y Å x.

Рассмотренные шестнадцать функций двух аргументов (будем называть их элементарными) позволяют строить новые переключательные функции следующим образом:

· путем перенумерации аргументов;

· путем подстановки в функцию новых функций вместо аргументов.

Функцию, полученную из функций f1, f2, …, fk путем применения (возможно многократного) этих двух правил, будем называть суперпозицией функций f1, f2, …, fk. Например, имея элементарные функции инверсии, конъюнкции, дизъюнкции, импликации, запрета, сложения по модулю два, можно составить новую переключательную функцию:

f (x,y,z) = ((Úy)Dz)Å((y®z)×x).

Используя таблицы, определяющие элементарные функции, можно задавать в виде таблицы любую переключательную функцию, являющуюся суперпозицией этих функций.

Пример 1. Представить в виде таблицы функцию

f (x,y,z) = ((Úy)Dz)Å((y®z)×x).

Решение. Функцию f (x,y,z) будем представлять последовательно, записывая в столбцы табл. 1.5 промежуточные результаты, получаемые после выполнения каждой операции:

Таблица 3

Таблица истинности функции f (x,y,z) = ((Úy)Dz)Å((y®z)×x).

xyz(Úy)(Úy)Dz)(y®z)(y®z)×x((Úy)Dz)Å((y®z)×x)
000111101
001110000
010111101
011110100
100000111
101000000
110011110
111010111

3. Представление переключательной функции в виде многочленов.

1. Конституенты. В п. 2 был рассмотрен один из возможных способов представления переключательной функции – задание ее в виде таблицы истинности. В этом разделе будем решать обратную задачу, а именно представление переключательной функции, заданной таблицей истинности, через элементарные функции, образующие базис.

Рассмотрим переключательные функции, называемые конституентами.

Определение 1. Конституентой единицы называют переключательную функцию n аргументов, которая принимает значение, равное единице на одном единственном наборе аргументов.

Из определения следует, что число различных конституент единицы среди функций n аргументов равно 2n. Конституенты единицы обозначаются так: Ki(x1, …, xn), где i – номер набора, на котором конституента равна единице. Например, запись K7(x1, x2, x3, x4) означает функцию четырех аргументов, равную единице на наборе (0111).

Конституента единицы может быть выражена через конъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него. Приведенную выше конституенту единицы можно представить через конъюнкцию аргументов следующим образом:

K7(x1, x2, x3, x4) = .

Чтобы записать в виде произведения конституенту Ki(x1, …, xn), можно воспользоваться следующим правилом: записать n-разрядное двоичное число (n – число аргументов), равное i, и конъюнкцию n переменных; над переменными, места которых совпадают с позициями нулей в двоичном числе i, поставить знак отрицания.

Пример 2. Записать конституенту, равную единице на двенадцатом наборе для функции пяти переменных.

Решение. Пятиразрядное двоичное число, равное двенадцати, записывается в виде: 01100. Запишем произведение пяти аргументов, располагая их в порядке возрастания индексов: x1×x2×x3×x4×x5. Сопоставляя это произведение с двоичным числом 01100, определяем, что знаки отрицания необходимо поставить над первым, четвертым и пятым аргументами:

K12(x1, x2, x3, x4, x5) =.

Определение 3. Конституентой нуля называют переключательную функцию n аргументов, которая принимает значение, равное нулю, на одном единственном наборе аргументов.

Из определения следует, что число различных конституент нуля среди функций n аргументов равно 2n. Конституенты нуля обозначаются так: Mi(x1, …, xn), где i – номер набора, на котором конституента равна нулю. Конституента нуля может быть выражена через дизъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него.

Чтобы записать в виде произведения конституенту Mi(x1, …, xn), можно воспользоваться следующим правилом: записать n-разрядное двоичное число (n – число аргументов), равное i, и дизъюнкцию n переменных; над переменными, места которых совпадают с позициями единиц в двоичном числе i, поставить знак отрицания.

Пример 3. Записать конституенту нуля, равную нулю на двадцать пятом наборе для функции пяти переменных.

Решение. Пятиразрядное двоичное число, равное двадцати пяти, записывается в виде: 11001. Запишем дизъюнкцию пяти аргументов, располагая их в порядке возрастания индексов: x1Úx2Úx3Úx4Úx5. Сопоставляя это произведение с двоичным числом 11001, определяем, что знаки отрицания необходимо поставить над первым, вторым и пятым аргументами:

M25(x1, x2, x3, x4, x5) =.

2. Представление переключательной функции в виде полинома Жегалкина.

Теорема Жегалкина.Любая переключательная функ­ция может быть представлена в виде полинома (много­члена), т. е. записана в форме

f(x1, . . . , xn) = аоÅ a1x1 Å a2x2 ÅÅ anxn Å an+1x1 x2ÅÅaNx1…xn ,

(1)

где a0, a1x1, … aNконстанты, равные нулю или единице;

Åоперация сложения по модулю два.

При записи конкретной переключательной функции в виде многочлена коэффициенты a0, a1x1, … aN выпа­дают, так как члены, при которых коэффициенты рав­ны нулю, можно опустить, а коэффициенты, равные еди­нице, не писать.

Для доказательства теоремы Жегалкина предположим, что задана произвольная переключатель­ная функция п аргументов f(x1, . . . , xn), равная еди­нице на некотором числе наборов с номерами m1, … mp.

Покажем, что переключательная функция f(x1, . . . , xn) равна сумме конституент единицы, ко­торые равны единице на тех же наборах, что и данная функция:

f(x1, . . . , xn) = Km1Å Km2Å . . . Å Kmp.(2)

Действительно, на каждом из наборов с номерами m1, … mp равна единице только одна конституента, стоящая в правой части выражения (2), а осталь­ные равны нулю. Следовательно, на этих наборах и только на них правая часть выражения (2) принимает значение, равное единице.

Для того чтобы перейти от выражения (2) к виду (1), достаточно представить конституенты едини­цы в виде произведений и, используя соотношение , заменить все переменные с отрицаниями (так как отрицания в выражение (3.1) не входят). Пусть на­пример, конституента единицы записана в виде

.

Тогда получим

Ki= (1 Åx1)x2(1Åx3)x4x5.

Раскрывая скобки и приводя подобные члены в соответствии со свойствами операции сложения по модулю два, получаем запись заданной функ­ции в форме (1), что и доказывает теорему.

Приведенное доказательство теоремы позволяет сформулировать правило представления любой пере­ключательной функции в виде многочлена.

Чтобы переключательную функцию, заданную таблицей истинности, представить в виде полинома Жегалкина, доста­точно записать функцию в виде суммы конституент еди­ницы, равных единице на тех же наборах, на которых равна единице заданная функция. Затем все аргументы, входящие в полученное выражение с отрицанием, заме­нить с помощью соотношения , раскрыть скобки и привести подобные члены с учетом тождества;

x, если п нечетно,

x Å x Å . . . Å x = 0, если п четно.

Пример 3. Представить в виде полинома Жегалкина функцию f58(x1,x2,x3).

Функция f58(x1,x2,x3) равна единице на втором, третьем, четвертом и шестом наборах, и может быть записана в виде суммы соответствующих конституент единицы:

f58(x1,x2,x3) =K2ÅK3ÅK4ÅK6 =.

Используя соотношение , получаем

f58(x1,x2,x3)=(1Åx1)x2(1Åx3)Å(1Åx1)x2x3Å x1(1Åx2)(1Åx3)Åx1x2(1Åx3).

Приводя подобные члены, окончательно находим

f58(x1,x2,x3)= x1Åx2Åx1x2Åx1x3.

3. Совершенная дизъюнктивная нормальная форма переключательной функции.

В общем виде пере­ключательная функция п аргументов может быть задана таблицей истинности. Обозначим через f(i) (i=0, … ,2n-1) значение функции на i-м наборе аргументов. Напомним, что каждая из величин f(i) принимает значение нуль или единица. В соот­ветствие i-му набору аргументов можно поставить конституенту единицы Ki, которая принимает значение, равное единице только на данном f(i)наборе. Умножим каждую конституенту единицы Ki на значение функ­ции f(i) и рассмотрим дизъюнкцию произведений fiKi:

. (3)

Если подставить в выражение (3) значения f(i), то получим дизъюнкцию конституент, которые равны еди­нице на тех же наборах, что и заданная функция. Дей­ствительно, ввиду того, что 0×x=0 и 0Úх=х, члены вы­ражения (2), в которых коэффициенты f(i)=0, можно опустить, а так как x×1 = x, то коэффициенты f(i)=1можно не писать. Тогда

где j1, …,jm – номера наборов, на которых функция равна единице;

m– число таких наборов.

Определение 3. Дизъюнкция конституент единицы, равных единице на тех же наборах, что и заданная функция, называется совершенной дизъюнктивной нормальной формой переключательной функции.

Любую переключательную функцию f(x1, . . . , xn) (кроме константы ноль) можно представить в совершенной дизъюнктивной нормальной форме. Заметим, что любая переключательная функция имеет единственную совершенную дизъюнктивную нормальную форм у: это непосредственно следует из выражения (3).

Совершенную дизъюнктивную нормаль­ную форму переключательной функции удобно находить в такой последователь­ности:

· выписать ряд произведений всех аргументов и соединить их знаками дизъюнкции; количество произведений должно равняться числу наборов, на которых заданная функция обращается в единицу;

· записать под каждым произведением набор аргу­ментов, на котором функция равна единице, и над аргу­ментами, равными нулю, поставить знаки отрицания.

Это правило называют иногда правилом запи­си переключательной функции по единицам.

Пример 4. Представить в совершенной дизъюнктивной нормальной форме переключательную функцию четырех аргументов f23805(x1,x2,x3,x4) (см. табл. 2).

Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные единице, на следующих наборах аргументов:

0001, 0011, 0100, 0101, 1000, 1001, 1010, 1011, 1100, 1101, 1111.

Таким образом, совершенная дизъюнктивная нормальная форма функции f23805(x1,x2,x3,x4) будет состоять из одиннадцати дизъюнкций, каждая из которых представляет собой конъюнкцию четырех элементов:

4. Совершенная конъюнктивная нормальная форма переключательной функции.

Если заданная переключательная функция равна единице на большинстве наборов аргументов, то представление функции в совершенной дизъюнктивной нормальной форме может оказаться достаточно громоздким. В этих случаях удобнее использовать другую форму представления функции – совершенную конъюнктивную нормальную форму. Для представления функций в этой форме используется функция конституенты нуля.

Рассмотрим выражение

, (4)

где f(i) – значение переключательной функции на i-м наборе.

Ввиду справедливости соотношений 1Úx= 1 и 0Úх= х, при подстановке в выражение (4) значений функ­ции f(i), сомножители, у которых f(i), == 1, можно опустить, а значения функции f(i)=0 не писать. Тогда

(5)

где j1, j2, …,jm–номера наборов, на которых функ­ция равна нулю;

т -число таких наборов.

Определение 4.Произведение конституент нуля, которые равны нулю на тех же наборах, что и заданная функция, называется совершенной конъюнктивной нормальной формой.

Любая переключательная функция f(x1, . . . , xn) (кроме константы единицы) может быть пред­ставлена в совершенной конъюнктивной нормальной форме. Любая переключательная функ­ция имеет единственную совершенную конъюнктивную нормальную форму.

Сформулируем правило представления переключа­тельной функции в совершенной конъюнктивной нор­мальной форме. Чтобы представить переключательную функцию п аргументов в совершенной конъюнктивной нормальной форме, достаточно:

· выписать произведение дизъюнкций всех аргументов с количеством сомножителей, равным числу наборов, на которых заданная функция обращается в нуль;

· выписать под каждым сомножителем набор аргу­ментов, на котором функция равна нулю, и над аргу­ментами, равными единице, поставить знаки отрицания;

Это правило иногда называют правилом запи­си переключательной функции по нулям.

Пример 5. Представить в совершенной конъюнктив­ной нормальной форме функцию f23805(x1,x2,x3,x4) (см. табл. 2).

Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные нулю, на следующих наборах аргументов:

0000, 0010, 0110, 0111, 1110.

Таким образом, совершенная конъюнктивная нормальная форма функции f23805(x1,x2,x3,x4) будет состоять из пяти конъюнкций, каждая из которых представляет собой дизъюнкцию четырех элементов:


ЛИТЕРАТУРА

1. Белоусов А.И., Ткачев С.Б. Дискретная математика: Учебник для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: изд-во МГТУ им. Н.Э. Баумана, 2001.– 744 с. (Сер. Математика в техническом университете; Вып XIX).

2. Горбатов В.А. Фундаментальные основы дискретной математики. Информационная математика.– М.: Наука, Физматлит, 2000.– 544 с.– ISBN 5-02-015238-2.

3. Зарубин В.С. Математическое моделирование в технике: Учеб. для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.– 496 с. (Сер. Математика в техническом университете; вып. XXI, заключительный).


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно