Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


ЛИСП-реализация основных способов вычисления гамма-функции

Тип Реферат
Предмет Информатика и программирование
Просмотров
1144
Размер файла
185 б
Поделиться

Ознакомительный фрагмент работы:

ЛИСП-реализация основных способов вычисления гамма-функции

СОДЕРЖАНИЕ

Введение

1. Постановка задачи

2. Математические и алгоритмические основы решения задачи

2.1 Понятие гамма-функции

2.2 Вычисление гамма функции

3. Функциональные модели и блок-схемы решения задачи

4. Программная реализация решения задачи

5. Пример выполнения программы

Заключение

Список использованных источников и литературы


ВВЕДЕНИЕ

Выделяют особый класс функций, представимых в виде собственного либо несобственного интеграла, который зависит не только от формальной переменной, а и от параметра.

Такие функции называются интегралами зависящими от параметра. К их числу относится гамма функции Эйлера.

Гамма функция представляется интегралом Эйлера второго рода:

.

Гамма-функция расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z).

Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.

Через гамма-функции выражается большое число определённых интегралов, бесконечных произведений и сумм рядов.


1. Постановка задачи

Требуется реализовать основные способы вычисления гамма-функции:

1. Гамма-функции для целых положительных n равна

Г (n) = (n - 1)! = 1·2... (n - 1). (1)

2. Для x>0 гамма-функция получается из ее логарифма взятием экспоненты.

. (2)

3. Гамма-функции для ряда точек:

(3)

Пример 1.

Вычислить гамма-функции Г(6).

Решение:

Так как 6 – положительное целое число, воспользуемся формулой (1):

Г(6) =(6-1)! = 5! = 120

Ответ: 120.

Пример 2.

Вычислить гамма-функции Г(0,5).

Решение:

Воспользуемся формулой (2):


.

.

Ответ: .

Пример 3.

Вычислить гамма-функции Г(1,5).

Решение:

Воспользуемся формулой (3):

y = 1.5 + 2 = 3.5.

.

Ответ: .


2. Математические и алгоритмические основы решения задачи

2.1 Понятие гамма-функции

Гамма функцию определяет интеграл Эйлера второго рода

G(a) =(2.1)

сходящийся при .

Рисунок 1. График гамма-функции действительного переменного

Положим =ty, t > 0 , имеем

G(a) =

и после замены , через и tчерез 1+t ,получим


Умножая это равенство и интегрируя по t и пределах от 0 до , имеем:

или после изменения в правой части порядка интегрирования ,получаем:

откуда

(2.2)

заменяя в (2,1) , на и интегрируем по частям

получаем рекурентною формулу

(2.3)

так как


Рисунок 2. График модуля гамма-функции на комплексной плоскости

При целом имеем

(2.4)

то есть при целых значениях аргумента гамма-функция превращается в факториал, порядок которого на единицу меньше взятого значения аргумента. При n=1 в (2.4) имеем

2.2 Вычисление гамма функции

Для вычисления гамма-функции используется аппроксимация логарифма гамма-функции. Сама же гамма вычисляется через него.

Для аппроксимации гамма-функции на интервале x>0 используется формула (для комплексных z) такого вида:

.


Она похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности eps не превышает . Кроме того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: Re z > 0.

Для получения действительной гамма-функции на интервале x>0 используется рекуррентная формула Gam(z+1)=z*Gam(z) и вышеприведенная аппроксимация Gam(z+1). Также можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму.

Во-первых, при этом потребуется вызов только одной математической функции – логарифма, а не двух – экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция – быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.

Для аппроксимации LnGam() – логарифма гамма-функции – получается формула:

Значения коэффициентов Ck являются табличными данными (Таблица 1).

kC
12.5066282746310005
21.0000000000190015
376.18009172947146
4-86.50532032941677
524.01409824083091
6-1.231739572450155
70.1208650973866179e-2
8-0.5395239384953e-5

Таблица 1. Значения коэффициентов Ck

Сама гамма-функция получается из ее логарифма взятием экспоненты. .


3 Функциональные модели и блок-схемы решения задачи

Функциональные модели и блок-схемы решения задачи представлены на рисунке 3, 4, 5, 6.

Условные обозначения:

- X – параметр функции;

- RS – инкремент;

- GN – список коэффициентов;

- Y – вспомогательная переменная;

- RES – результат вычисления гамма-функции;

- GAM – временная переменная, содержащая вычисление гамма-функции.

Рисунок 3 – Функциональная модель решения задачи для функции GAMMA

Рисунок 4 – Функциональная модель решения задачи для функции GAMMA_WHOLE


Рисунок 5 – Блок-схема решения задачи для поиска логарифма гамма-функции GAMMA_LN


Рисунок 6 – Блок-схема решения задачи для поиска логарифма гамма-функции GAMMA_POINT


4. Программная реализация решения задачи

;СПИСОК КОЭФФИЦИЕНТОВ

(SETQ CN '(2.5066282746310005 1.0000000000190015 76.18009172947146 -86.50532032941677 24.01409824083091

-1.231739572450155 0.1208650973866179e-2 -0.5395239384953e-5))

;ЛОГАРИФМ ГАММА ФУНКЦИИ

(DEFUN GAMMA_LN (X)

(SETQ SER (CADR CN))

(SETQ L (CDDR CN))

(SETQ Y X)

(DO

((J 2))

((>= J 8))

(SETQ Y (+ Y 1))

(SETQ CO (CAR L))

(SETQ SER (+ SER (/ CO Y)))

(SETQ L (CDR L))

(SETQ J (+ J 1))

)

(SETQ Y (+ X 5.5))

(SETQ Y (- Y (* (+ X 0.5) (LOG Y))))

(SETQ Y (+ (* -1 Y) (LOG (* (CAR CN) (/ SER X)))))

)

;ВЫЧИСЛЕНИЕ ГАММА-ФУНКЦИИ ЧЕРЕЗ ЕЕ ЛОГАРИФМ

;ГАММА ДЛЯ ПОЛОЖИТЕЛЬНЫХ АРГУМЕНТОВ

(DEFUN GAMMA (X)

(EXP (GAMMA_LN X))

)

;ГАММА ДЛЯ ЦЕЛЫХ ЧИСЕЛ

(DEFUN GAMMA_WHOLE (X)

(SETQ X (- X 1))

(DO

((RES 1) (RS 1))

((EQL X 0) RS)

(SETQ RS (* RES RS))

(SETQ X (- X 1))

(SETQ RES (+ RES 1))

)

)

;ГАММА ДЛЯ МНОЖЕСТВА ТОЧЕК

(DEFUN GAMMA_POINT (X)

(IF (> X 0)

(PROGN

(SETQ Y (+ X 2))

(SETQ GAM (* (SQRT (* 2 (/ PI Y))) (EXP (+ (* Y (LOG Y)) (- (/ (- 1 (/ 1 (* 30 Y Y))) (* 12 Y)) Y)))))

(SETQ RES (/ GAM (* X (+ X 1))))

)

;ИНАЧЕ

(PROGN

(SETQ J 0)

(SETQ Y X)

(DO

(())

((>= Y 0))

(SETQ J (+ J 1))

(SETQ Y (+ Y 1))

)

(SETQ GAM (GAMMA_POINT Y))

(DO

((I 0))

((>= I (- J 1)))

(SETQ GAM (/ GAM (+ X I)))

(SETQ I (+ I 1))

)

(SETQ RES GAM)

)

)

RES)

;ПОЛУЧАЕМ ЭЛЕМЕНТ ФУНКЦИИ

(SETQ FUNC 0)

(SETQ INPUT_STREAM (OPEN " D:GAMMA.TXT" :DIRECTION :INPUT))

(SETQ FUNC (READ INPUT_STREAM))

(CLOSE INPUT_STREAM)

;РЕЗУЛЬТАТ ГАММА-ФУНКЦИИ

(SETQ OUTPUT_STREAM (OPEN "D:RESULT.TXT" :DIRECTION :OUTPUT))

(PRINT 'RESULT_OF_GAMMA_FUNCTION OUTPUT_STREAM)

;ПРИМЕНЯЕМДЛЯПОЛОЖИТЕЛЬНЫХЧИСЕЛ

(PRINT (MAPCAR 'GAMMA FUNC) OUTPUT_STREAM)

;ПРИМЕНЯЕМДЛЯПОЛОЖИТЕЛЬНЫХЦЕЛЫХЧИСЕЛ

(PRINT (MAPCAR 'GAMMA_WHOLE FUNC) OUTPUT_STREAM)

;ПРИМЕНЯЕМДЛЯЛЮБЫХЧИСЕЛ

(PRINT (MAPCAR 'GAMMA_POINT FUNC) OUTPUT_STREAM)

(TERPRI OUTPUT_STREAM)

(CLOSE OUTPUT_STREAM)

;END


5 Пример выполнения программы

Пример 1.

Рисунок 7 – Входные данные. Вычисление гамма-функции для положительных целых чисел

Рисунок 8 – Выходные данные. Вычисление гамма-функции для положительных целых чисел

Пример 2.

Рисунок 9 – Входные данные. Вычисление гамма-функции для положительных чисел


Рисунок 10 – Выходные данные. Вычисление гамма-функции для положительных чисел

Пример 3.

Рисунок 11 – Входные данные. Вычисление гамма-функции для множества чисел

Рисунок 12 – Выходные данные. Вычисление гамма-функции для множества чисел


ЗАКЛЮЧЕНИЕ

Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях. Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.

Итогом работы можно считать созданную функциональную модель реализации основных способов вычисления гамма функции. Данная модель применима к гамма-функции с положительным целым параметром, гамма-функции с положительным параметром, гамма-функции для множества точек. Созданная функциональная модель реализации основных способов вычисления гамма функции и ее программная реализация могут служить органической частью решения более сложных задач.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы

1. Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н.Бронштейн, К.А.Семендяев. – М.: Наука, 2007. – 708 с.

2. Вычисление гамма-функции и бета-функции [Электронный ресурс] – Режим доступа: http://www.cyberguru.ru/cpp-sources/algorithms/vytchislenie-gamma-funktsii-i-beta-funktsii.html

3. Гамма-функция – Википедия [Электронный ресурс] – Режим доступа: http://ru.wikipedia.org/wiki/Гамма_функция

4. Кремер, Н.Ш. Высшая математика для экономистов: учебник для студентов вузов. [Текст] / Н.Ш.Кремер, 3-е издание – М.:ЮНИТИ-ДАНА, 2006. C. 412.

5. Семакин, И.Г. Основы программирования. [Текст] / И.Г.Семакин, А.П.Шестаков. – М.: Мир, 2006. C. 346.

6. Симанков, В.С. Основы функционального программирования [Текст] / В.С.Симанков, Т.Т.Зангиев, И.В.Зайцев. – Краснодар: КубГТУ, 2002. – 160 с.

7. Степанов, П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А.Степанов, А.В. Бржезовский. – М.: ГУАП, 2003. С. 79.

8. Хювенен Э. Мир Лиспа [Текст] / Э.Хювенен, Й.Сеппянен. – М.: Мир, 1990. – 460 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно